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RESUMO

Embora as inversões convencionais de dados separados possam gerar modelos úteis, re-
sultados melhores podem ser obtidos através de inversão conjunta uma vez que essa in-
formação extra adicionada reduz a ambiguidade ou a não-unicidade do problema. Foi
avaliado um esquema de inversão conjunta aplicado a três diferentes métodos eletromag-
néticos: Audiomagnetotelúrico de Fonte Controlada (CSAMT), Método Eletromagnético
a Multi-frequência (EMMF) e Magnetotelúrico (MT). Estes múltiplos conjuntos de da-
dos são combinados e invertidos dois a dois, a fim de estimar um modelo comum de
parâmetros (condutividades) que ajustam simultaneamente ambos os conjuntos de da-
dos. Utilizamos uma técnica de inversão com vínculos na lateral para estimar modelos
pseudo-2D e aplicamos o método de Marquardt para resolver os problemas de inversão
conjunta 1D, regularizados com Suavidade Global ou Variação Total. Exemplos com da-
dos sintéticos 1D e 2D demonstraram que os modelos derivados da inversão conjunta dos
métodos EMMF+CSAMT e CSAMT+MT resolvem melhor as variações de resistividade
da subsuperfície terrestre já que esses métodos fornecem informações complementares.

Palavras-chaves: Inversão conjunta. Inversão lateralmente vinculada (LCI). Méto-
dos eletromagnéticos.



ABSTRACT

Although conventional separate inversions can generate useful models, better results
can be derived from jointly estimated models since this extra information reduces the am-
biguity or non-uniqueness of the problem. We evaluated a joint inversion scheme applied to
three different EM methods: Controlled Source Audio-Magnetotelluric (CSAMT), Multi-
frequency Electromagnetic Method (EMMF) and Magnetotelluric (MT). These multiple
data sets are combined and inverted two by two in order to estimate a common parameters
model (conductivities) that simultaneously fit both measurement sets. We use a laterally
constrained inversion (LCI) tecnique to estimate pseudo-2D models and apply the Mar-
quardt’s method to solve the 1D joint inverse problems, regularized with either Global
Smoothness or Total Variation. Examples with synthetic 1D and 2D data demonstrates
that models derived from joint EMMF+CSAMT and CSAMT+MT inversion better re-
solve the Earth’s subsurface resistivity variations as these methods provide complementary
information.

Keywords: Joint inversion. Laterally constrained inversion (LCI). Electromagnetic
methods.
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1 INTRODUCTION

Inversion of geophysical data can generate useful models of the underlying anomalies
hence facilitating the geological interpretation. However, the geophysical inversion prob-
lem is intrinsically ill-posed in the sense that a number of different models can explain
the data (ambiguity). Additionally, in most cases, inversion problems are underdeter-
mined and the data are affected by noise, which increases the ambiguity of the inversion.
To reduce this problem, a regularization factor is introduced into the objective function.
Furthermore, data acquired with different geophysical methods are typically affected by
different interference sources; therefore, the joint inversion of multiple geophysical data
can not only mitigate the noise, but also reduce the ambiguity or non-uniqueness of the
problem.

Joint inversion was first proposed by Vozoff and Jupp (1975). Subsequently, Sasaki
(1989) presented a two-dimensional joint inversion of magnetotelluric (MT) and dipole–di-
pole resistivity data to recover the distribution of underground resistivity. The example
of 1D joint marine controlled-source eletromagnetic method (MCSEM) and marine MT
(MMT) inversion shown in Constable and Weiss (2006) present improvement of the reso-
lution of a thin resistor relative to the MCSEM-only case. Similarly, Mackie et al. (2007)
extend this problem to the 3D inversion case. Then Abubakar et al. (2011) propose a
multiplicative cost function instead of the traditional additive one in order to address
the weighting problem and adaptively put CSEM and MT data on equal footing in the
inversion process. Auken et al. (2007) show that the resolution of the subsurface re-
sistivity structures is significantly enhanced if transient electromagnetic (TEM) x- and
z-component data are inverted jointly. Candansayar and Tezkan (2008) could resolve
both near-surface and deeper structure by using a 2D joint inversion of radiomagnetotel-
luric (RMT) and DC resistivity data. Jegen et al. (2009) presented excelent results using
his joint inversion applied to marine exploration data.

The methods tested in this work were MT, CSAMT and EMMF. The first method lies
on the MT fields nature which are basically plane-waves and horizontally uniform over
large distances. Its source are naturally occurring signals, enabling investigation from
many tens to hundreds of kilometers and because of that, it is routinely used to image
regional electrical resistivity structures. The Controlled Source Audio-Magnetotellurics
(CSAMT) is a method derived from MT, with the main difference that it uses an artificial
EM source (typically grounded electric dipole) in the range 0.1 Hz to 10 kHz, so its high
frequency content is responsible for addressing near surface targets. Many different works
have been published to show that the method can contribute to better determination of
near surface electrical distributions (Ismail et al., 2011; Pedrera et al., 2016). Along with
those, there are some papers on CSAMT inversion, for instance Mitsuhata et al. (2002)
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2

developed an algorithm to invert frequency-domain vertical magnetic data generated by a
grounded-wire source for a 2D model of the earth (2.5-D inversion); Lei et al. (2010) shows
a study on 2D CSAMTmodelling and inversion taking into account source and topography
effects. More recently, Lin et al. (2018) presented 3D inversion results along with a scheme
to incorporate topographic distortions into the inversion instead of correcting them.

The other electromagnetic method used in this work was the new Multi-frequency elec-
tromagnetic method (EMMF) which basically has the purpose of inductively measuring
the ground electrical resistivity and induced polarization (IP). Although it has its origins
back to 1968 (Dias, 1968), only very recently it has been receiving contributions in terms
of improved equipment design, theoretical and field work, specific software development
for data processing and interpretation procedures (Dias, 2000; Dias et al., 2012, 2006,
2005; Machado, 2009; Machado and Dias, 2012; Sifontes et al., 2016). A few studies have
been published on inversion of EMMF data (Piedade and Régis, 2014; Piedade et al.,
2015).

To invert the data, in this work we apply an efficient and fast inversion algorithm that
uses a 1D joint and laterally constrained inversion (LCI) of data from the whole set of
sounding stations on a survey line. Data from CSAMT, EMMF and MT methods are
combined two by two and inverted jointly. Miorelli (2011) has successfully applied a similar
algorithm, showing good consistency with the 1D LCI inversion results obtained from 3D
data. These inversion algorithms are an implementation of a 1D laterally constrained
inversion technique (Santos, 2004; Auken and Christiansen, 2004; Auken et al., 2005)
using analytical derivatives to build the Jacobian matrix and, specifically in this work, we
have also applied two different regularizations methods: Global Smoothness (Constable
et al., 1987) and Total Variation (Martins et al., 2011). The biggest advantage of LCI
techniques is its capacity of performing inversion of large datasets at a low computational
cost. An analysis of the joint inversion methodology is performed for (i) 1D inversion of
data generated by two different 1D models and (ii) 1D LCI of three synthetic data sets
generated from 2D models.



2 METHODOLOGY

The study was done by analyzing (i) 1D inversion results with regularizations in the
vertical direction only and (ii) results from a pseudo-2D technique that uses 1D forward
modeling and lateral constraints (laterally constrained inversion - LCI).

This LCI method performs joint inversion of data from a set of sounding stations by
including all the data in a single cost function. Each observation is associated with a
layered model beneath its location, each one generating a 1D sequence of conductivity
values that represent a vertical column. The final 2D model is built by a lateral collation
of 1D layered models, applying lateral constraints between adjacent conductivities (Fig.
2.1). Detailed information on how to apply both vertical and lateral constraints will be
given in “Matrix S” subsection (4.1.3) in chapter 4.
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Figure 2.1: Vertical and lateral constraints in 1D structures positioned side by side. The
red triangles are measuring stations.

In this study, the 2D observed data d are the real and imaginary components of
the radial magnetic (Hr) and electric fields (Ex) for the EMMF and CSAMT methods,
respectively, and the real and imaginary components of the surface apparent impedance
(Ẑ1) from transverse magnetic (TM) propagation mode in the MT case. In such scenarios,
magnetic and electric field measurements are taken over the x axis. For the EMMF
method, we consider a circular loop as its source and, specifically for the CSAMT case,
we consider a horizontal electrical dipole located in the x direction (Fig. 2.2).
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Figure 2.2: Acquisition geometry.

The interpretative model is a horizontal plane-parallel layered medium (Fig. 3.1) for
each sounding and the parameters are the logarithmic values of the conductivities of each
layer (logarithms are used to avoid negative conductivities). This model is the one for
which the conductivities will be estimated by the inversion, hence it receives this name
(interpretative) because it is the physical model that will be used to help the geological
interpretation.



3 FORWARD PROBLEMS

The forward problem consists on numerical modeling of data from a given set of pa-
rameters (model). In geophysics, the parameters are values of a certain physical property
of the subsurface of the Earth and the solution of the forward problem makes it possible
to predict the geophysical data for certain geological structures.

In this study, the three forward problems consist in simulating the data set generated
by a 1D layered Earth’s subsurface. It is formed at the top by an isotropic and infinite
homogeneous half-space representing the air (σ0 = 10−12S/m), and just below another
semi-space formed by N parallel layers, also homogeneous of finite thickness hj, ending in
another infinite semi-space: the substrate. In this model, the substrate is the last layer
(N -th layer) and has infinite thickness. See Figure 3.1.
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Figure 3.1: Model of N homogeneous and isotropic horizontal layers.

To determine the fields produced by this layered medium, one must start with Maxwell’s
equations in the frequency domain:

∇ · εE = 0 (3.1)

∇× E + ζH = 0 (3.2)

∇ · µB = 0 (3.3)

∇×H− ηE = JS (3.4)

where E and H are the electric and magnetic fields, JS is the current density, η = σ+ iωε
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and ζ = iωµ (i =
√
−1). The quantities ω, ε and µ are the angular frequency, electric

permittivity (F/m) and magnetic permeability (H/m), respectively.

3.1 EMMF

A horizontal square loop with its sides measuring hundreds of meters and extended
to the ground surface (h0 = 0) is used as the EMMF’s source. It operates using several
frequencies and the response of the radial horizontal magnetic field Hr(r, z), produced by
inductive effects, is collected at vertical loop receiving coils (also located at the surface).
Detailed information about the method can be found in Dias et al. (2019), Silva (2012)
and Piedade (2014).

Machado (2009) demonstrates that for the source-receiver offsets used in the method’s
surveys, the square source can be approximated by and modeled as a horizontal circular
loop. The current density JS for a loop with current I(ω), frequency ω dependent, radius
a and located at a height of h0 is given by:

JS = I(ω)
a

r
δ(r − a)δ(z − h0)φ̂ (3.5)

Combining equations 3.2, 3.4 and 3.5, it is possible to write a second order equation in
cylindrical coordinates:(

∂2Eφ
∂r2

+
1

r

∂Eφ
∂r
− Eφ
r2

)
+
∂2Eφ
∂z2

+ k2Eφ = ζI(ω)
a

r
δ(r − a)δ(z − h0) (3.6)

where k2 = −ηζ is the wavenumber.

Hυ

[
∂2f(r)

∂r2
+

1

r

∂f(r)

∂r
− υ2

r2
f(r)

]
= −k2r f̂(kr) (3.7)

Hυ

[
δ(r − a)

r

]
= Jυ(kra) (3.8)

If a first order (υ =1) Hankel transform (Abramowitz and Stegun, 1964) is applied in
equation 3.6 and using the identities provided in 3.7 and 3.8, equation 3.9 is obtained:

∂2Êφ
∂z2

− u2Êφ = ζI(ω)aJ1(kra)δ(z − h0) (3.9)

with u2 = k2r − k2. The solution for this equation is

Êφ(kr, z) = −ζI(ω)aJ1(kra)
e−u|z−h0|

2u
(3.10)

which is an equation that describes Êφ(kr, z) as a plane-wave field in the (kr, z) domain.
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For a horizontal layered medium and supposing measurements are taken at the surface
level, equation 3.11 turns into equation 3.12 since j = 0 and h0 = 0.

Ê
(j)
φ (kr, z) = Ej(e

−uj(z−zj−1) +Rj
TEe

uj(z−zj)) (3.11)

Ê
(0)
φ (kr, z) = E0(1 +R

(0)
TE) (3.12)

where E0 and R
(0)
TE are the transmission and reflexion coefficients, respectively, at the

surface level. The former is given by equation 3.13 and the latter can be obtained by
3.14.

E0 =
−ζ0I(ω)aJ1(kra)eu0h0

2u0
(3.13)

R
(0)
TE =

χ0 − χ̂1

χ0 + χ̂1

(3.14)

with χ̂1 representing the surface apparent admitance, which is calculated using the recur-
sive formula bellow:

χ̂j = χj
χ̂j+1 + χjtanh(ujhj)

χj + χ̂j+1tanh(ujhj)
, j = N − 1, ..., 2, 1 (3.15)

χ̂N = χN (3.16)

with

χj =
uj
ζj

=

√
k2r − k2j
ζj

(3.17)

Substituting equation 3.11 in 3.2, we can determine the radial horizontal magnetic
field in the /kr, z/ domain:

Ĥ(j)
r (kr, z) = −χjEj(e−uj(z−zj−1) −Rj

TEe
uj(z−zj−hj)) (3.18)

and by applying an inverse Hankel transform, we have the same response but now in the
spatial (r, z) domain.

H(j)
r (r, z) =

∫ ∞
0

Ĥ(j)
r (kr, z)J1(krr)krdkr (3.19)

Since we are collecting the responses at surface level (z = 0), then

H(0)
r (r, z) =

∫ ∞
0

−χ0E0(1−R(0)
TE)J1(krr)krdkr (3.20)

The integral transform in 3.20 does not have a known analytical solution, thus it needs
to be numerically evaluated with the use of digital filters to solve it (Werthmüller et al.,
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2019). The observations are the real and imaginary components of the radial horizontal
magnetic field Hr(r, ω) normalized by the vertical component of a magnetic dipole H0

z (r)

of magnetic moment m, located in the vacuum (Ward et al., 1987):

H̄ =
Hr(r, ω)

H0
z (r)

(3.21)

where
H0
z (r) =

−m
4πr3

(3.22)

This normalization dampers the geometric decrease in field intensity with increasing dis-
tance from the source, emphasizing the conductivity variations in the medium.

3.2 CSAMT

The CSAMT source is usually a horizontal electrical dipole measuring between 1 km
and 2 km of length. Each souding station is located about four times the skin-depth1

from the transmitter (Zonge and Hughes, 1991). Receivers record both the electric field,
parallel to the grounded wire, and the magnetic field, perpendicular to the grounded wire.
Electrical and magnetic fields are measured by electrodes and antennas, respectively. More
details can be found in Perez (2016).

In equation 3.4, the term JS is the CSAMT source. The source used to calculate the
1D forward responses is x-directed and located in (x0, y0, h0), its expression is:

JS = I(ω)dSxδ(x− x0)δ(y − y0)δ(z − h0)êx (3.23)

For this type of source the TE (electric transverse) and TM (magnetic transverse)
propagation modes exist simultaneously. Thus, the electromagnetic fields will be given by
the sum of these two modes of propagation. The general expressions for the electric and
magnetic fields, in terms of the Schelkunoff potentials approach (Ward et al., 1987) are:

E = −∇× F− ζA +
1

η
∇(∇ ·A) (3.24)

H = ∇×A− ηF +
1

ζ
∇(∇ · F) (3.25)

For the particular case in which the potential F is zero and the potential A has only the
z-component Az, only electromagnetic fields of TM mode, with respect to the z direction,
are generated. On the other hand, if the potential A is zero and the potential F has only
the z-component Fz, fields in the TE mode are generated, also in respect to the z-direction.

1The skin-depth provides a quantitative measure of how the field attenuates as it propagates through
the conductive medium. Its mathematical formula is: 500

π

√
10
fσ
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The total fields are a composition of these two particular cases, their components are:

Ex =
1

η

∂2Az
∂x∂z

− ∂Fz
∂y

(3.26)

Ey =
1

η

∂2Az
∂y∂z

+
∂Fz
∂x

(3.27)

Ez =
1

η

(
∂2

∂z2
+ k2

)
Az (3.28)

Hx =
1

ζ

∂2Fz
∂x∂z

+
∂Az
∂y

(3.29)

Hy =
1

ζ

∂2Fz
∂y∂z

− ∂Az
∂x

(3.30)

Hz =
1

ζ

(
∂2

∂z2
+ k2

)
Fz (3.31)

By performing an analysis similar to that performed by Farias (2012) to obtain Fz

and Az, we can determine the final expression for the components of the electromagnetic
field in the space domain (x, y, z) as a function of the electric dipole moment I(ω)dSx.
The expression for the component we are interested in is:

E(0)
x (r, ω) = −IdSx

4π

(
1

r
− 2x2

r3

)∫ ∞
0

(1−R(0)
TM)Z0J1(krr)dkr

−IdSx
4π

x2

r2

∫ ∞
0

(1−R(0)
TM)Z0J0(krr)krdkr

−IdSx
4π

(
1

r
− 2y2

r3

)∫ ∞
0

(1 +R
(0)
TE)

1

χ0

J1(krr)dkr

−IdSx
4π

y2

r2

∫ ∞
0

(1 +R
(0)
TE)

1

χ0

J0(krr)krdkr

(3.32)

R
(0)
TM and R(0)

TE are the reflection coefficients for the TM and TE propagation modes,
respectively, at the surface. The latter is given by 3.14 and the former, by the following
expression:

R
(0)
TM =

Z0 − Ẑ1

Z0 + Ẑ1

(3.33)

with Ẑ1 representing the surface apparent impedance, which is calculated using the re-
cursive formula bellow:

Ẑj = Zj
Ẑj+1 + Zjtanh(ujhj)

Zj + Ẑj+1tanh(ujhj)
, j = N − 1, ..., 2, 1 (3.34)

ẐN = ZN (3.35)
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with

Zj =
uj
ηj

=

√
k2r − k2j
ηj

(3.36)

As in the EMMF case, the integral transform in 3.32 does not have a known analytical
solution, thus we used digital filters (Werthmüller et al., 2019) to solve for Ex. The
observations are the real and imaginary components of the radial electrical field Ex(r, ω)

normalized by its dipole moment p = I(ω)dSx and a factor to correct the geometric
damping:

Ē =
Ex(r, ω)

E ′(r)
(3.37)

where
E ′(r) =

p

πr3
(3.38)

3.3 MT

The MT assumption is a vertically incident plane-wave caused by natural variations in
the Earth’s magnetosphere, which induces horizontal electric currents (known as telluric
currents) in the subsurface. Given the electrical conductivities σj and thicknesses hj of
each layer, it is possible to determine the components of the apparent impedance tensor
at the surface Ẑ1 using equation 3.34. Additionally, apparent resistivity ρa and phase
φ, both depending on frequency ω, can be calculated using the equations below (Vozoff,
1991):

ρa =
1

ωµ0

|Ẑ1|2 (3.39)

φ = tan−1

[
Im(Ẑ1)

Re(Ẑ1)

]
(3.40)

where µ0 is the magnetic permeability of the vacuum. The apparent resistivity ρa

corresponds to the resistivity of a half-space equivalent to the stratified medium.



4 INVERSE PROBLEM

Most of the geophysical problems are non-linear, meaning that the observed data
are not a linear combination of the model parameters. A geophysical dataset d, with
No observations, is to be fit by synthetic data generated from the Np model parameters
in vector P. The relationship between the synthetic data (for each method) and the
parameter set is in the form

dEMMF = FEMMF(P), (4.1)

dCSAMT = FCSAMT(P), (4.2)

dMT = FMT(P), (4.3)

where F is an non-linear vector function that represents the forward modeling operator.
This vector function also depends on the frequency ω, and on the measurement position
(x, y, z).

Since the function F doesn’t have a unique inverse, the problem of determining a set
of parameters that generate synthetic data that approximate the observations is defined
as that of minimizing a functional φd that measures the misfit of the model’s forward
response F(P) for a given set of parameters P to the observed data d:

φd(P) = ‖d− F(P)‖2 = [d− F(P)]T [d− F(P)] (4.4)

in the joint approach used in this study,

φd = φEMMF + φCSAMT or (4.5)

φd = φCSAMT + φMT or (4.6)

φd = φEMMF + φMT (4.7)

Optimization methods are used to find the solution of this type of problem, where the
objective is to find the minimum of the data misfit functional φd, that is, to minimize the
difference between observed data and calculated data. In this study, the minimization of
the nonlinear functional φd, with respect to P, was performed iteratively by the Gauss-
Newton method with the Marquardt’s modification (Marquardt, 1963; Pujol, 2007).

4.1 REGULARIZED INVERSE PROBLEM

In geophysical applications, there is an infinite number of solutions that explain geo-
physical observations within experimental accuracy. One way of making this problem

11
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well-posed, is to introduce a priori information about the parameters to be estimated.
This is done by including regularizing functionals φREG defined from a desired relation-
ship between parameters, and acting not only as mathematical devices to stabilize the
inverse geophysical problem, but also as constraints that reflect the geological and physical
characteristics of the Earth’s different environments.

After the introduction of regularization, the solutions to the inversion problem are
obtained from the minimization of both φd and φREG as parts of a single function called
objective function φα:

φα(P) = φd(P) + αφREG(P), (4.8)

where α is a positive scalar, called the regularization parameter, which controls the rela-
tive weight of the information introduced by the regularizing functional to the inversion
process.

In this work two regularization functions were used: Global Smoothness φGS and Total
Variation φTV .

4.1.1 Global Smoothness

The Global Smoothness or first-order Tikhonov regularization (Tikhonov and Arsenin,
1977) is the well-known Occam’s inversion (Constable et al., 1987) that leads to solutions
in which the differences between parameter values are minimal, that is, variations between
parameter values are smooth. The mathematical representation of the functional φGS is:

φGS(P) = ‖SP‖22, (4.9)

where S is a matrix which stores the constraints between the parameters. More details
about how this matrix is organized can be found in the “Matrix S” subsection (4.1.3).

The gradient vector gGS and the Hessian matrix HGS of φGS are, respectively:

gGS = ∇pφGS(P) = 2StSP, (4.10)

HGS = ∇p∇t
pφGS(P) = 2StS (4.11)

By minimizing the functional φα (Eq. 4.8) with the global smoothness regularization,
solutions are the parameters corresponding to the smoothest model that fits the data.

4.1.2 Total Variation

Smooth models representative of the subsurface geological structures are not always
desirable. There are cases where sharp discontinuities in the resistivity, as in faults or
intrusions, should be allowed in the models. The global smoothness regularization leads
to solutions in which regions of discontinuities are detected, but softened in the solution
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model. On the other hand, the Total Variation regularizer does not penalize sharp vari-
ations, clearly marking the abrupt changes in the parameter values. The mathematical
representation of the functional φTV is (Martins et al., 2011):

φTV (P ) =

Nd−1∑
i=1

|(Pi+1 − Pi)|, (4.12)

or in matrix form
φTV (P) = ‖SP‖1. (4.13)

where S is a matrix which stores the constraints between the parameters (see subsection
4.1.3) and ‖.‖1 is the l1 norm2 of the vector of differences between parameters.

However, if Pi+1 = Pi, the functional φTV is not differentiable. To overcome this
problem, Vogel (1997) proposed the approximation:

φTV (P ) ∼=
Nd∑
k=1

[(Pi − Pj)2k + β]1/2, (4.14)

where β is a small and positive scalar.
The gradient vector and the Hessian of φTV are, respectively:

gTV = STq, (4.15)

HTV = STQS, (4.16)

where q is a vector given by

q =
(Pi − Pj)

[(Pi − Pj)2k + β]1/2
(4.17)

and Q is a diagonal matrix, with its non-zero values given by

Q =
β

[(Pi − Pj)2k + β]3/2
(4.18)

By minimizing the functional φα (Eq. 4.8) with the Total Variation regularization,
solutions with abrupt variations between the parameters are preserved.

4.1.3 Matrix S

For the specific case when there is a configurarion with the parameters arranged in
the form shown in Figure 4.1, the number of layers is N=3, the number of sounding

2The norm ln of a vector u is, by definition: ‖u‖n = [
N∑
i=1

|ui|n]1/n
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stations is Nx=2, thus the total number of parameters to be estimated by the inversion is
Np=N ×Nx=6. The number of differences (or constraints) in the vertical and horizontal
directions are Ndv = Np −Nx and Ndh = Np −N , respectively.

σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

σ
N-2

σ
N-1

σ
N

Figure 4.1: Vertical and lateral constraints in a 3-layer model with two adjacent soundings.
The red triangles are measuring stations.

Sm×n is a matrix which stores the constraints between the parameters, each line being
filled with 1 and -1 in the positions of the pairs of parameters to be related and zeros
elsewhere. It is divided into two parts: the upper part contains the vertical constraints
and the lower part, the lateral constraints. Therefore, its size is given by a total number
of rows equal to m = Ndv+Ndh and columns n = Np. For instance, the model shown in
Figure 4.1 would produce a S matrix such that:

S =



1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1


(4.19)

The result of the multiplication of S matrix with parameters vector P is equal to
another vector with m rows, which stores the differences between the parameters:

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1





P1

P2

P3

P4

P5

P6


=



P1 − P2

P2 − P3

P4 − P5

P5 − P6

P1 − P4

P2 − P5

P3 − P6


(4.20)
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4.2 GAUSS-NEWTON METHOD WITH MARQUARDT’S STRATEGY

The objective function φα (Eq. 4.8) is treated as a second order approximation φ̂α of
φα around point Pk, with the second order and higher derivatives equal to zero, since the
non-linear geophysical functional is approximated by a linear function in P.

φ̂α(P) ' φα(Pk) + ∆Pt
kg

α
k +

1

2
∆Pt

kH
α
k∆P (4.21)

where ∆Pk is the perturbation vector of the parameters, in the k-th iteration, and

gαk = (∇Pφα) |P=Pk
, (4.22)

Hα
k = (∇∇t

Pφα) |P=Pk
(4.23)

are, respectively, the gradient vector and the Hessian (second derivative matrix) of the
functional φα, both with respect to the vector P evaluated in Pk.

From the expansion of the functional φα in a Taylor series (Eq. 4.21) and taking into
account that gαk = gdk + α gREGk and Hα

k = Hd
k + αHREG

k , we can rewrite Eq. 4.21 as:

φ̂α(P) ' φα(Pk) + ∆Pt
k(g

d
k + α gREGk ) +

1

2
∆Pt

k(H
d
k + αHREG

k )∆P. (4.24)

where the gradient and Hessian of the data misfit functional are approximated by (Pujol,
2007):

gdk = −2At[d− F(P)] (4.25)

Hd
k = 2AtA (4.26)

For the EMMF and CSAMT joint inversion, for example, gdk = [gEMMF
k ,gCSAMT

k ] and
Hd
k = [HEMMF

k ,HCSAMT
k ]. The gREG and HREG are the gradient vector and the Hessian of

the regularization functional, which can be either eqs. 4.10 or 4.15 for the gradient term
and 4.11 or 4.16 for the Hessian.

To obtain the necessary step ∆Pk to find the minimum of the functional φ̂α(P), its
gradient vector (with respect to vector ∆Pk) is calculated and equated to the null vector,
which results in:

(2AtA + αHREG)∆P = 2At[d− F(P)]− α gREG, (4.27)

where A is the Jacobian or sensitivity matrix, defined as:

Aij =
∂Fi(p)

∂pj
=
∂Fi(p)

∂ln(σj)
= σj

∂Fi(p)

∂σj
(4.28)

Aij denotes the sensitivity of the i-th data with respect to the j-th parameter. In this
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work, the Jacobian matrix was built by calculating the analytical derivatives of the 1D
EM responses with respect to conductivities (eq. 4.28). With that, the performance of
the code is improved one order of magnitude faster than conventional numerical methods
(Crepaldi et al., 2011).

Thus, in the k-th iteration, Eq. 4.27 is solved for ∆Pk and the updated value of the
parameter vector will be

Pk+1 = Pk + ∆Pk (4.29)

Marquardt (1963) suggests adding a factor λ (Marquardt coefficient) to the diagonal
of the Hessian matrix to stabilize the steps of the process. It is a positive scalar and its
value is changed during the inversion process, according to the analysis of the objective
function φ̂α, in a given estimate, in relation to the previous estimate. If the objective
function decreases (φα(Pk+1) < φα(Pk)), λ changes to λ

10
. If the objective function

increases (φα(Pk+1) > φα(Pk)), λ changes to 10λ. After the addition of the Marquardt
parameter, Eq. 4.27 turns to:

(2AtA + αHREG + λI)∆P = 2At(d− F(P))− α gREG (4.30)

where I is the identity matrix and the updated value of the parameter vector will be given
by Eq. 4.29.

At a given iteration, if the objective function is close to the minimum, λ is sufficiently
small compared to the elements of the Hessian and the method is closest to the Gauss-
Newton method (Eq. 4.27). On the other hand, in regions far from the minimum point,
λ becomes large compared to the elements of the Hessian, making the matrix (2AtA +

αHREG + λI) diagonally dominant, and the iteration simply takes a small step in the
downward direction of the gradient of φ̂α (as in the Steepest Descent method).

4.3 ANALYTICAL DERIVATIVES

The interpretative model used to calculate sensitivities is a plane-parallel layered
medium (Fig. 3.1), with a total of 25 layers including the infinite substrate. The thick-
nesses of each layer increases 10% with depth, starting with a 10 m thick first layer. It
consists of an homogeneous half-space, hence all layers have the same conductivities equal
to 200 Ω.m.

The following notation is used for the parameters of layer j: Zj and χj are the intrinsic
impedance and admitance, respectively; Ẑj and χ̂j are the apparent impedance and admi-
tance at the interface on top of the layer; hj is the thickness of the layer; uj =

√
k2r − k2j

and k2j = −ηjζj, where ηj = σj + iωεj and ζj = iωµj. For this specific case, the electric
permittivity εj and magnetic permeability µj of each layer are considered to be constant
and equal to their respective values in free-space (ε0 = 8.854× 10−12; µ0 = 4π × 10−7)
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Figure 4.2 show the sensitivities for each observation corresponding to their respective
method.

4.3.1 EMMF

To calculate the sensitivity matrix (Eq. 4.28) for the EMMF case, we need the deriva-
tive of the radial magnetic field with respect to the conductivities of the interpretative
model:

Aij = σj
∂(H̄

(0)
r )i

∂σj
(4.31)

∂H̄
(0)
r

∂σj
=

1

H0
z

∫ ∞
0

χ0E0
∂R

(0)
TE

∂σj
J1(krr)krdkr (4.32)

where the derivative of the reflection coefficient at the surface with respect to the model
conductivities is:

∂R
(0)
TE

∂σj
=

−2χ0

(χ0 + χ̂1)2
∂χ̂1

∂σj
(4.33)

and the derivative of the surface apparent admitance with respect to the model conduc-
tivities ∂χ̂1

∂σj
is calculated using the following recursive formula:

For m 6= j
∂χ̂m
∂σj

=
χ2
msech

2(umhm)

(χm + χ̂m+1tanh(umhm))2
∂χ̂m+1

∂σj
; (4.34)

For m = j 6= N

∂χ̂m
∂σj

=

∂χ̂j+1

∂σj
+

χjhjsech
2(ujhj)

2
+

tanh(ujhj)

ζj

χj + χ̂j+1tanh(ujhj)

−
( 1
2uj

+
hj χ̂j+1sech

2(ujhj)

2χj
)(χ̂j+1χj + χ2

j tanh(ujhj))

(χj + χ̂j+1tanh(ujhj))2
;

(4.35)

For m = j = N
∂χ̂N
∂σN

=
∂χN
∂σN

; (4.36)

with
∂χm
∂σj

=
1

2uj
. (4.37)

4.3.2 CSAMT

The sensitivity matrix for the CSAMT case depends on the derivative of the radial
electric field with respect to the conductivities of the interpretative model:
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Aij = σj
∂(Ē

(0)
x )i

∂σj
(4.38)

∂E
(0)
x

∂σj
= −IdSx

4π

(
1

r
− 2x2

r3

)∫ ∞
0

[
−∂R

(0)
TM

∂σj

]
Z0J1(krr)dkr

−IdSx
4π

x2

r2

∫ ∞
0

[
−∂R

(0)
TM

∂σj

]
Z0J0(krr)krdkr

−IdSx
4π

(
1

r
− 2y2

r3

)∫ ∞
0

∂R
(0)
TE

∂σj

1

χ0

J1(krr)dkr

−IdSx
4π

y2

r2

∫ ∞
0

∂R
(0)
TE

∂σj

1

χ0

J0(krr)krdkr

(4.39)

where ∂R
(0)
TE

∂σj
is given by 4.33 and ∂R

(0)
TM

∂σj
is given by:

∂R
(0)
TM

∂σj
=

−2Z0

(Z0 + Ẑ1)2
∂Ẑ1

∂σj
(4.40)

and the derivative of the surface apparent impedance with respect to the model parame-
ters ∂Ẑ1

∂σj
is calculated using the recursive formula:

For m 6= j
∂Ẑm
∂σj

=
Z2
msech

2(umhm)

(Zm + Ẑm+1tanh(umhm))2
∂Ẑm+1

∂σj
; (4.41)

For m = j 6= N

∂Ẑm
∂σj

=

∂Zm

∂σj
Ẑj+1 + 2Zj

∂Zm

∂σj
tanh(ujhj) + Z2

j sech
2(ujhj)hjζj

2uj(Zj + Ẑj+1tanh(ujhj))

−
(∂Zm

∂σj
+ Ẑj+1sech

2(ujhj)hjζj)(Ẑj+1Zj + Z2
j tanh(ujhj))

2uj(Zj + Ẑj+1tanh(ujhj))2
;

(4.42)

For m = j = N
∂ẐN
∂σN

=
∂ZN
∂σN

; (4.43)

with
∂Zm
∂σj

=
ζj

2ujσj
− uj
σ2
j

. (4.44)
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4.3.3 MT

For the MT case, the sensitivity matrix is:

Aij = σj
∂(Ẑ1)i
∂σj

(4.45)

where the term ∂Ẑ1

∂σj
is calculated using the set of equations 4.41, 4.42, 4.43 and 4.44.
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Figure 4.2: Sensitivities calculated for the EMMF, CSAMT and MT observations. Each
column corresponds to the sensitivity of a layered medium at a specific frequency. The
vertical axis is the depth of the interpretative model interfaces.



5 1D INVERSION RESULTS

The synthetic data for the 1D inversion were generated by the model presented in
figure 5.1. Two cases were analyzed: Model 1 consists of a conductive target layer (10
Ω.m) and Model 2, of a resistive (500 Ω.m) layer, both 200 m thick and embbeded in a
background medium with 100 Ω.m resistivity. Responses were recorded at a fixed position
of x = 7 km, by 15 logarithmically spaced frequencies in the range of 0.1 Hz to 1000 Hz.
A circular loop with radius of 340 m was used to simulate the EMMF source.

The interpretative model used is a layered medium similar to the one presented in
Figure 3.1, with a total of 25 layers including the infinite substrate. The thicknesses of each
layer increases 10% with depth, starting with a 10 m thick first layer. Their conductivities
start as an initial guess represented by the dashed red lines and their estimated values
(after the inversion) are shown by the black lines in “stairs” format. The stability of the
final models was tested by analyzing if they would be obtained if the process was started
using different resistivity values for the layers of the initial interpretative model.

100 Ω.m

10 Ω.m  or  500 Ω.m

100 Ω.m

300 m

200 m

R = 340m

7 km

Figure 5.1: 1D Model used to generate the 1D synthetic data. The field measurements
were taken at x = 7 km.

5.1 MODEL 1

Figures 5.2 and 5.3 show the 1D models obtained using the GS and TV regularizations,
respectively. In these figures, the three results in the first row correspond to separate
inversions of EMMF, CSAMT and MT methods while the second row contains the 1D
joint inversion results. Overall, the models estimated by joint inversions using TV were
significantly better than the smooth ones obtained with GS for Model 1. Not only the
conductive layer was identified, but also its boundaries were delineated and the resistivity
of the background was correctly defined.
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Figure 5.2: Final 1D models obtained by isolated and joint inversion of the EMMF,
CSAMT and MT methods using the Global Smoothness regularization. The conductiv-
ities of each layer start as an initial guess represented by the dashed red lines and their
estimated values (after the inversion) are shown by the black lines in “stairs” format.
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Figure 5.3: Final 1D models obtained by isolated and joint inversion of the EMMF,
CSAMT and MT methods using the Total Variation regularization.

Specifically analyzing each result for Model 1:

• EMMF - Despite those results illustrate a good attempt to resolve the resistivities
of the target layer and background, this is done in a over smoothned way thus the
conductive layer interfaces were not well-resolved even in the TV case.

• CSAMT - The isolated CSAMT inversions are good in terms of reaching the correct
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resistivity of the target layer. The background resistivity, however, was significantly
affected by an expected oscillatory effect caused by the regularizations.

• MT - Both the upper background and the target conductive layer were correctly
resolved, whereas the resistivities obtained for the lower background area were not
sufficiently high as a result of the influence of the vertical regularization which
spreads down through the deeper layers of the interpretative model.

• EMMF+CSAMT - The 1D joint inversion using GS improves the over smoothness
problem present in the EMMF isolated inversion and the background resistivity is
corrected for the oscillatory effect mentioned in the CSAMT isolated inversion. Nev-
ertheless, the model obtained by 1D joint inverison using TV is significantly closer
to the true model, since this regularization is efficient to delineate the interfaces of
the conductive layer. This was the best result because it matched almost perfectly
the true model.

• EMMF+MT - Same analysis is done for this joint inversion: the over smoothness
problem and the lower background area are corrected reaching sufficiently high
resistivities in this case. The TV result is better than the GS one since it provided
a model similar to the true model, despite the fact that it was slightly thicker.

• CSAMT+MT - The CSAMT contributed in this result by correcting the area under
the conductive layer, which wasn’t well resolved in the MT-only inversion. The
oscillatory effect in the CSAMT-only is also attenuated in this case.

5.2 MODEL 2

Model 2 is shown in Figure 5.1, corresponding to the case when the heterogeneity is
resistive. The estimated models obtained with the GS and TV regularizations are in Fig-
ures 5.4 and 5.5, respectively. Model 2, unlike Model 1 which had better estimated models
by joint inversions using TV, had sufficiently good estimated models by the inversion of
the CSAMT data alone. It was sufficient to recover the target location both using the GS
and TV since in this case we are dealing with the TM mode components which exhibit a
special interaction with resistive horizontal interfaces, resulting in surface charge density
(Crepaldi et al., 2011).

The EMMF and MT methods showed a minimal sensitivity to the resistive layer, being
efficient and contributing only in the determination of the host medium. In the EMMF
case, it can be explained by the fact that the EMMF data are composed of the radial
magnetic component of the coil, which is strongly influenced by the inductive effects of
the geological environment. Therefore it responds more efficiently to conductive targets,
since those structures suffer a greater induction effect.
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Figure 5.4: Final 1D models obtained by isolated and joint inversion of the EMMF,
CSAMT and MT methods using the Global Smoothness regularization.
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Figure 5.5: Final 1D models obtained by isolated and joint inversion of the EMMF,
CSAMT and MT methods using the Total Variation regularization.
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Specifically analyzing each result for Model 2:

• EMMF - The EMMF method alone did not provided good results in terms of the
identification of the resistive layer. Although it could resolve the background rela-
tively well, it was almost insensitive to the target layer.

• CSAMT - Despite some oscillations on the background resistivites, the isolated
CSAMT inversions were enough to determine an estimated model sufficiently close
to the true one.

• MT - Similar to the EMMF method, MT could resolve the background resisitivity
well, but the results were not good in terms of the identification of the resistive
layer.

• EMMF+CSAMT - The 1D joint inversion results showed a better attempt to get the
resistivities of the target layer if compared to the EMMF isolated inversion results,
this was done by the contribution of the CSAMT data. The background resistivity
was improved in the TV result.

• EMMF+MT - There were no significant improvements if compared to the corre-
sponding separate inversions. The results were similar to the ones obtained by the
isolated inversion of these two methods.

• CSAMT+MT - The layer interfaces were identified and the background oscillations
in the CSAMT were attenuated due to the contribution of MT.



6 LCI RESULTS

To illustrate the use of the inversion algorithm, we present its application to three
different sets of synthetic data generated by 2D forward modeling finite element programs
written by Silva (2012) - EMMF and Perez (2016) - CSAMT. All datasets comprise 26
equally spaced measuring stations, going from 4500 m to 9500 m, with 15 logarithmically
spaced frequencies in the range of 0.1 Hz to 1000 Hz. The synthetic data of each problem
were contaminated with 2% Gaussian noise. Moreover, the stability of the solution was
tested by performing the inversion starting with different initial values for the resistivity
of the interpretative models and analyzing whether a similar final model were obtained
from these.

6.1 MODEL 1

The inversion algorithms were tested in a first model consisting of a resistive semi-
space with a conductive target body (10 Ω.m) embedded in it, as observed in figure 6.1.
The resistivity of the half-space is ρ1 = 100 Ω.m while the heterogeneity has ρ2 = 10 Ω.m.

200 m

100 Ω.m

4.5 km 5 km

R = 340 m

400 m

10 Ω.m

300 m

500 m

6800 m 7200 m

Figure 6.1: 2D Model. The field measurements were taken along a 5 km survey line at
the surface, starting at x = 4500 m with a receiver spacing of 200 m.

Figure 6.2 shows the observed data obtained from this 2D model. As mentioned in
the Methodology (chapter 2), the observations are:

1. EMMF: the real and imaginary components of the radial horizontal magnetic field
normalized by the vertical component of a magnetic dipole (H̄r) ;

2. CSAMT: the real and imaginary components of the radial electrical field normalized
by its dipole moment and a factor to correct the geometric attenuation with distance
(Ēx);

25
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3. MT: the real and imaginary components of the apparent impedance tensor at the
surface (Ẑ1).
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Figure 6.2: EMMF, CSAMT and MT synthetic observed data generated from Model 1.

Figures 6.3 and 6.4 show the pseudo-2D models obtained using the LCI technique
and the GS and TV regularizations, respectively. Overall, similar to the results from 1D
inversion shown in section 5.1 of chapter 5, the models estimated by joint LCI using both
GS and TV were good enough in the sense of detecting the presence of the 2D conductive
body. The individual inversions of CSAMT and EMMF present particular problems that
will be discussed in the following paragraphs. The isolated MT LCI, on the other hand,
was as good as the joint inversions since the nature of magnetotelluric fields are plane-
waves and data from this method is intrinsically easier to be fitted by 1D models which
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may have benefited its results produced by LCI methodology.
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Figure 6.3: Final pseudo-2D models obtained by isolated and joint inversion of the EMMF,
CSAMT and MT methods using the Global Smoothness regularization.
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Figure 6.4: Final pseudo-2D models obtained by isolated and joint inversion of the EMMF,
CSAMT and MT methods using the Total Variation regularization.
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Specifically analyzing each result for Model 1:

• EMMF - Instead of a conductive body, the individual EMMF LCI generated a model
with a resistive body and some conductive artifacts in the background. After careful
analysis, it was considered to be a case when the 2D nature of the fields imposed
itself on the observations and that was the best model that could fit the observed
data taking into account the fact that the calculated data was generated by a set
of 1D layered interpretative models. The low conductivity areas right above and
under the heterogeneity are artifacts created by the 1D inversion (features similar
to these are observed in Kang et al. (2013)).

• CSAMT - The individual CSAMT LCI identified the heterogeneity correctly as a
conductive body, despite a more resistive effect on the left hand side area under
the body. This resistivity anomaly is probably due to the shadow effect, a common
feature in CSAMT data (Zonge and Hughes, 1991).

• MT - The effect of the vertical constraint, that spread the influence of the conductive
bodies down through the deeper layers, is now balanced by the influence of the lateral
constraints, so the 2D body is better delineated using the LCI.

• EMMF+CSAMT - This joint LCI result improved the final model by attenuating
the artifacts mentioned in the isolated LCI of these two methods.

• EMMF+MT - This inversion also attenuated artifacts in the background resistiv-
ity, however it located the conductive body shallower and smaller (in the vertical
direction) than it is in reality.

• CSAMT+MT - It locates the 2D body correctly, addressing correct resistivities to
both the target and the background medium. There is an effect spread laterally
(due to the lateral constraints) causing a sligthly uncorrect resistivity for the area
under the body.

6.2 MODEL 2

Second model tested is geometrically equal to the first one (fig. 6.1), except for the
fact that the 2D body is resistive now (ρ2 = 500 Ω.m). Apart from the resistivity of the
target, same configuration was used to simulate the data acquisition.
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Figure 6.5: EMMF, CSAMT and MT synthetic observed data generated from Model 2.

Figures 6.6 and 6.7 show the pseudo-2D models obtained using the LCI technique
and the GS and TV regularizations, respectively. Similar to the results from 1D inversion
shown in section 5.2 of chapter 5, the individual CSAMT inversion was sufficient to detect
the target resistive body, however there were some unwanted artifacts in the resistivities
of the medium that hosts this target. The models estimated by EMMF+CSAMT joint
inversion had these artifacts attenuated due to the influence of the EMMF which resolved
the background.



30

5000 6000 7000 8000 9000

x (m)

0

100

200

300

400

500

600

700

800

900

D
e
p
th

 (
m

)

1D LCI EMMF

90

95

100

105

110

115

120

125

130

 (
 

.m
 )

5000 6000 7000 8000 9000

x (m)

0

100

200

300

400

500

600

700

800

900

D
e
p
th

 (
m

)

1D LCI CSAMT

90

95

100

105

110

115

120

125

130

 (
 

.m
 )

5000 6000 7000 8000 9000

x (m)

0

100

200

300

400

500

600

700

800

900

D
e
p
th

 (
m

)

1D LCI MT

90

95

100

105

110

115

120

125

130

 (
 

.m
 )

5000 6000 7000 8000 9000

x (m)

0

100

200

300

400

500

600

700

800

900

D
e
p
th

 (
m

)

1D LCI EMMF+CSAMT

90

95

100

105

110

115

120

125

130

 (
 

.m
 )

5000 6000 7000 8000 9000

x (m)

0

100

200

300

400

500

600

700

800

900

D
e
p
th

 (
m

)

1D LCI EMMF+MT

90

95

100

105

110

115

120

125

130

 (
 

.m
 )

5000 6000 7000 8000 9000

x (m)

0

100

200

300

400

500

600

700

800

900

D
e
p
th

 (
m

)

1D LCI CSAMT+MT

90

95

100

105

110

115

120

125

130

 (
 

.m
 )

Figure 6.6: Final pseudo-2D models obtained by isolated and joint inversion of the EMMF,
CSAMT and MT methods using the Global Smoothness regularization.
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Figure 6.7: Final pseudo-2D models obtained by isolated and joint inversion of the EMMF,
CSAMT and MT methods using the Total Variation regularization.

Specifically analyzing each result for Model 2:

• EMMF - The EMMF method alone did not provided good results in terms of the
identification of the resistive body. It could resolve the background relatively well,
however it was unable to identify the target. This can be explained by the fact that
EMMF’s observations are the radial magnetic components of the coil, which are
strongly influenced by the inductive effects, hence it does not have a good response
when the medium is resistive because those structures are intrinsically resistant to
induction effects.



31

• CSAMT - The individual CSAMT LCI positioned the heterogeneity correctly and
the background resistivities were approximately the correct ones, even though some
oscillations impaired this result.

• MT - As mentioned before, the individual MT LCI was as good as the joint inversions
since the nature of magnetotelluric fields are plane-waves and data from this method
is intrinsically easier to be fitted by 1D models.

• EMMF+CSAMT - This result suggests that the joint LCI of EMMF and CSAMT
is an excellent tecnhique in the exploration of resistive structures. These methods
provide complementary information, since 1- the EMMF is largely insensitive to
resistive bodies, but can resolve the background regional resistivity structure and 2-
the CSAMT method responds to resistive targets because of vertical electric currents
from its electric dipole source fields, but its isolated inversion showed an unwanted
oscillation effect in the resistivities of the background.

• EMMF+MT - Similar to what happened in the first model, with a conductive
target, this inversion located the conductive body shallower and smaller than the
real model.

• CSAMT+MT - The influence of the MT data helped the regional resistivities from
the background. Additionally, the heterogeneity was quite well resolved thus this
joint LCI also proved to be a good option in the search for resistive structures.

6.3 MODEL 3

Figures 6.8 and 6.9 show the third model tested in this study and its corresponding
data pseudo sections. It is a two-layer model containing one conductive body (ρ1 = 10
Ω.m) located in the upper layer (ρ2 = 100 Ω.m). The substrate is an infinite resistive
layer of ρ3 = 500 Ω.m.
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Figure 6.8: 2D Model.
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Figure 6.9: EMMF, CSAMT and MT synthetic observed data generated from Model 3.
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The resistivity models obtained using the LCI technique using GS and TV regulariza-
tions are in Figures 6.10 and 6.11, respectively.
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Figure 6.10: Final pseudo-2D models obtained by isolated and joint inversion of the
EMMF, CSAMT and MT methods using the Global Smoothness regularization.
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Figure 6.11: Final pseudo-2D models obtained by isolated and joint inversion of the
EMMF, CSAMT and MT methods using the Total Variation regularization.
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Specifically analyzing each result for Model 3:

• EMMF - Similar to what happened in Model 1, this result shows a resistive body
instead of a conductive one. The substrate is detected at the correct depth, but its
interface continuity is impaired by the effect of the heterogeneity.

• CSAMT - It identifies the 2D conductive body and the substrate. The GS imposes
smoothness regardless abrupt changes in the resistivity, therefore the interface from
the upper layer to the substrate is impaired. The TV result, on the other hand,
responds to the abrup changes and detects the interface but deeper than it really is.

• MT - The MT LCI result also detects the body and the substrate. As mentioned in
earlier results, the effect of the lateral constraint decreases the “shade” artifact under
the target so the interface between the upper layer and the substrate is relatively
well detected.

• EMMF+CSAMT - This joint LCI result is a good combination: the EMMF con-
tributed by providing the regional information (upper layer and substrate) and the
CSAMT helped with the target information (2D conductive body).

• EMMF+MT - Althought this result has a good estimated regional model, the target
identification was impaired because of the EMMF contribution which interfere with
its estimation as resistive.

• CSAMT+MT - Together with the joint EMMF+CSAMT LCI, this result confirmed
those two combinations are efficient and fast techniques to image either conductive
or resistive targets since complementary information is provided by each method.



7 CONCLUSIONS

The 1D and LCI results show that joint inversion of CSAMT+MT and EMMF+CSAMT,
as compared to their respective individual inversions, are effective ways for delineating
geoelectrical structures, since these two methods combined provide complementary infor-
mation. The EMMF and MT methods respond more efficiently to conductive targets, are
largely insensitive to resistive bodies and can resolve the background regional resistivity.
The CSAMT method, on the other hand, responds to both resistive and conductive tar-
gets, but the results showed a poor imaging of the subsurface geology that hosts these
targets.

Results from isolated inversions of MT also illustrates cases in which this method can
be useful, although the LCI technique itself might have favored the MT results to better
identify the 2D targets. LCI of CSAMT-only was also able to resolve the target, however
in some results the host medium presented unwanted resistivity artifacts. The 1D LCI
proved not to be a good alternative for inverting 2D EMMF data, since the LCI of EMMF-
only presented problems in various cases, both in the attempt to resolve conductive and
resistive targets. On the other hand, EMMF and MT methods played a unique role in
the joint approaches contributing with the estimation of the background.

Moreover, the use of both LCI technique and analytical derivatives to calculate the
Jacobian were excellent in terms of generating very fast and accurate (if compared to
finite differences approach) results, resulting in an efficient and inexpensive tool for quick
imaging.
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