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RESUMO

A estimativa de paramêtros petrofísicos a partir de dados de perfilagem de poço é de
primordial importância para avaliação da qualidade de reservatórios de hidrocarboneto,
tanto para identificação do potencial exploratório, como para controle de poços produ-
tores. Existem propriedades das rochas que são diretamente registradas pelas sondas,
como tempo de trânsito de ondas acústicas e densidade da rocha, contudo, informação
sobre mineralogia e fração porosa, por exemplo, precisa ser determinada indiretamente.
Neste trabalho são desenvolvidos dois estudos sobre parâmetros essenciais para interpre-
tação petrofísica, que são a velocidade da onda S (VS) e a densidade da rocha (ρb). Em
conjunto com a velocidade da onda P (VP ), estes parâmetros são úteis principalmente para
quantificar módulos elásticos e, consequentemente, verificar propriedades geomecânicas.
Além disso, tais parâmetros têm correlação direta com porosidade e litologia das for-
mações atravessadas pelo poço. A primeira parte desta dissertação consiste em um artigo
sobre estimativa de VS a partir de VP adaptada do método de Greenberg-Castagna, em
que se propõe a calibragem de relações empíricas em dados reais. Por sua vez, a segunda
parte é um artigo sobre inversão linear intervalar de ρb, aplicada também em dados reais,
com intuito de obter estimativas das densidades da matriz, dos fluidos e do folhelho na
formação. A aplicação das metodologias propostas é realizada em perfis de poços prove-
nientes da plataforma continental da Noruega, em que se verifica a viabilidade de estimar
propriedades físicas de rocha que dependem da litogolia local e dos fluidos presentes nas
formações geológicas.

Palavras-chaves: Petrofísica. Perfis de poço. Velocidade de onda S. Densidade da
rocha. Inversão intervalar.



ABSTRACT

The estimation of petrophysical parameters from well-logging data is of paramount im-
portance to evaluate the quality of hydrocarbon reservoirs, for exploratory potential iden-
tification as well as for management of production wells. There are rock properties that
are directly recorded by the sondes, such as acoustic waves traveltimes and bulk density,
however, information on mineralogy and porous fraction, for instance, requires to be de-
termined indirectly. In this work are developed two studies about essential parameters
in petrophysical interpretation, which are the S-wave velocity (VS) and the bulk den-
sity (ρb). Coupled with the P-wave velocity (VP ), these parameters are mainly useful to
quantify the elastic moduli and, consequently, verify geomechanical properties. Moreover,
such parameters have direct correlation to porosity and the lithology of the formations
traversed in the wellbore. The first part of this dissertation consists of an article about
VS estimation from VP adapted from Greenberg-Castagna method, in which is proposed
the calibration of empirical relations in real data. In turn, the second part is an article
about ρb interval linear inversion, also applied in real data, with the purpose of obtaining
estimates of matrix, fluid and shale densities in the formations. The application of the
proposed methodologies is performed in well-logs from the Norwegian continental shelf,
wherein is verified the feasibility of the estimation of rock physical properties that depend
on the local lithology and the fluids present in the geological formations.

Keywords: Petrophysics. Well-logs. S-wave velocity. Bulk density. Interval inver-
sion.
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1 INTRODUCTION

Understanding the earth’s subsurface is a multidisciplinary challenge that geoscien-
tists are committed to work on. Geophysics uses physical methods (e.g. seismic, gravity,
magnetic, electrical and electromagnetic surveys) to provide in-depth information about
the rocks and their content, which is a core contribution to overcome this challenge. In
hydrocarbon exploration, the well-logging technique is employed to obtain high resolu-
tion data about downhole geological formations and, hence, gather local information on
petroleum prospects. The quantitative interpretation of these well-logs involves the deter-
mination of various petrophysical parameters, which are directly associated to reservoir
rock’s properties such as porosity, permeability, elastic moduli and bulk density (Avseth
et al., 2005).

After the first wireline log was recorded in 1927 by Henri Doll and the Schlumberger
brothers, a variety of logging tools have been developed by the petroleum industry to
run acoustic, neutron and electrical logs (Ellis and Singer, 2007). Although the overall
quality and capability of these logging devices has evolved, there are cost and operation
limitations yet to be accounted in the acquisition of petrophysical logs and their derived
parameters. Reliable compressional wave velocity (Vp) logs, for instance, are commonly
acquired by acoustic devices, however, running proper shear wave velocity (Vs) logs is
more expensive and because of that the shear wave information usually is available for a
limited number of boreholes drilled in a hydrocarbon field. Currently, the most common
approaches to infer Vs data are based on empirical correlations, which is an important
method to estimate many other parameters that are difficult to acquire in situ (e.g. shale
volume and permeability).

In addition to acoustic wave data, the bulk density (ρb) measurements are essential to
determine lithology and porosity, thereby composing the group of elastic inputs (Vp, Vs
and ρb) that plays a central role in hydrocarbon exploration (Vernik, 2016). Traditional
quantification of porosity from density or sonic measurements relies on prior lithology
identification and assumptions on the individual properties of the bulk fractions (min-
erals and pore fluids), which may need further estimation if pure lithologies and fluid
log response aren’t available. Therefore, extracting petrophysical information from well-
logs may demand parameter inversion and calibration schemes, otherwise it can led to
misinterpretation of reservoir properties.

In this work, we approached two examples of petrophysical parameter estimation that
involve integration of well-logs and can be used to refine reservoir analyzes such as am-
plitude variation with offset (AVO), pore pressure estimation and rock physics modeling
(Mavko et al., 2009; Zhang, 2011; Castagna and Backus, 1993). This dissertation is struc-
tured in two scientific articles: the first (Chapter 2) evaluates an hybrid modeling for
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shear-wave velocity prediction, whereas the second (Chapter 3) presents an interval in-
version procedure to estimate mineral and fluid densities. In both articles we work with
real datasets of reservoir sandstones from the Norwegian continental shelf. The results
achieved in the articles demonstrate the feasibility of the proposed methodologies, which
focus on providing valuable information that eventually will feed quantitative interpreta-
tion of petrophysical logs (shown schematically in Figure 1.1). Moreover, the dissertation
comprises two appendices related to the first article, which describe some features of
effective medium theory and fluid substitution analysis.

Well-logging
Data

Fluid substitution &
Empirical calibration

Logs zonation &
Volumetric fractions

Shear
Velocity
Prediction

Density
Interval
Inversion

Quantitative
Petrophysics
Interpretation

Article 1 Article 2

Figure 1.1: Diagram that summarizes the dissertation structure (articles) and its main appli-
cation (elastic parameters estimation and posterior integration with other well-logs into reser-
voir evaluation). The S-wave velocity prediction and the inversion of rock density are impor-
tant to enhance the determination of porosity, permeability, fluid saturations and other elastic-
petrophysical quantities based on well-logging data.



2 ARTICLE 1 - PREDICTION OF S-WAVE VELOCITY BY A

HYBRID MODEL BASED ON THE

GREENBERG-CASTAGNA EQUATION

Matias C. de Sousa, José J. S. de Figueiredo, Carolina B. da Silva, Murillo J. de S.
Nascimento
Journal of Petroleum Science and Engineering, January 2019
https://doi.org/10.1016/j.petrol.2018.09.014

In geophysics, more specifically in rock physics and petrophysics, empirical equations
play an important role in data regularization, especially in datasets that are difficult
to acquire in situ. In terms of well-logging, a common scenario is the absence of shear
wave slowness data, which can be handled by different methods that aim filling data
gaps (regularization). This work consists of the application of a hybrid approach (based
on Greenberg-Castagna method) to estimate S-wave velocity in brine-saturated litholo-
gies on well-log datasets. The combination of local polynomial regressions with a fluid
substitution analysis (Gassmann’s equation) leads to an effective method of estimating
shear wave velocity (VS) from compressional wave velocity (VP ) when information about
lithology and saturation are available. Well-log datasets (from the Norwegian Sea region)
are used to demonstrate the feasibility of our methodology and show its usefulness for
dataset regularization based on the local information. We selected learning and test wells
from the Norne Field, where Lower to Middle Jurassic sandstones behave as hydrocarbon
reservoirs. Our results show that the best fitting between the measured and predicted
S-wave velocities were obtained from the modified Greenberg-Castagna method (in this
work, named calibrated relation), also verified on a well from the North Viking Graben
(validation dataset).

2.1 INTRODUCTION

The quantitative seismic interpretation scope includes several questions related to
measurable physical parameters and their interaction on theoretical rock models, which
makes a consistent reservoir characterization achievable. Among all elastic modes of
propagation, the S-wave mode is the one that has aroused much interest in industry and
academia in recent years. Nowadays, S-wave velocities are used frequently when it comes
to the characterization of fractured or unconventional hydrocarbon reservoirs (Tokhmchi
et al., 2010; De Figueiredo et al., 2012; Santos et al., 2015; Gholami et al., 2016; Biswas
and Baruah, 2016). Among all elastic parameters related to rock properties, the shear
velocity requires a more rigorous treatment due to the limitations of its recording on
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geophysical well-logging or seismic survey, despite the evolution of borehole geophysics’
technology (Stevens and Day, 1986; Chen, 1988; Chen, S., 1989; Tang and Wang, 2005;
Tan et al., 2015). In this scenario, empirical relations are used to overcome the limitations
of S-wave recording.

Shear-wave logging data is often of low quality and, due to acquisition limitations,
irregular or even unavailable, mainly in old wells. Historically, restrictions to observe
the S-wave arrival on acoustic logs are identified, which implies low reliability of shear
slowness measurements on boreholes. For instance, the detection of refracted waves using
monopole sources is limited to formations where the S-wave is faster than the drilling
mud P-wave. Also, the dispersive nature of flexural waves (dipole sources) and the use
of quadrupole sources (LWD) conditioned the acquisitions to low frequencies. Another
limitation is observed at formations where the measurements are strongly affected by its
anisotropy, especially on directional wells (Cheng, 2015).

A pragmatic alternative to solve the lack of shear velocity information is to use
physical-mathematical models that enable its prediction based on more reliable parame-
ters, for example, pure relations between VP and VS (Castagna et al., 1985). There are
several models developed for this purpose that are very useful for the oil industry (Røgen
et al., 2004; Dvorkin and Mavko, 2014). The most famous method is the one devel-
oped by Castagna et al. (1985) and improved by Greenberg and Castagna (1992), which
uses empirical equations established for specific monomineralic composite and the Biot-
Gassmann theory to estimate VS in brine saturated formations (Gassmann, 1951; Biot,
1956). To ensure that these equations are applied correctly, it is interesting to calculate
the regression coefficients using local data, which generally minimizes prediction errors.
Based on genetic algorithms and artificial neural networks, Parvizi et al. (2015) devel-
oped a cost-effective method for predicting VS from VP . Gholami et al. (2014) were able
to model S-wave logs using seismic attributes and independent component analysis (ICA).
The S-wave velocity prediction is also feasible through intelligent and pattern recognition
(by Support Vector Regression-SVR) algorithms (Rezaee et al., 2007; Bagheripour et al.,
2015; Nourafkan and Kadkhodaie-Ilkhchi, 2015).

Therefore, VS log is often predicted using various techniques in order to reduce the
logging run cost, but still obtain a representative volume of real data (which is essential
to develop alternative approaches for estimating shear velocities). These methods mostly
involve rock physics models, heuristic models or empirical models (Han et al., 1986; Krief
et al., 1990; Xu and White, 1996; Jorstad et al., 1999; Vernik et al., 2002). Despite being
easier to apply, the empirical relations accuracy can’t be assured in a single well analysis
and usually they are derived for brine-saturated rocks. In contrast, heuristic and rock
physics models are robust and have the advantage of being applicable to various types
of rocks, however, require input parameters that may be difficult to acquire (information
about pore geometry and volumetric fractions of multi-phase complex media). Well-
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established prediction models have in common the strong VS correlation to VP , density and
porosity, which combined to the need of dataset regularization motivates improvements
on these methodologies, i.e., increasing the quality of S-wave wireline logging data is a
challenge that can be solved by using better quality logs of compressional velocity, density
and porosity.

In this work, we propose a modification of the Greenberg-Castagna method to es-
timate VS well-logs from VP logs, considering local information about fluid saturation
and lithology. Our proposal is considered a hybrid model in terms of rock physics tools
(Avseth et al., 2005). Although our theoretical considerations require more input parame-
ters (water saturation, porosity and clay volume) for its application, our empirical relation
is expected to have higher correspondence between local measured P-wave and estimated
S-wave velocities. Unlike Greenberg-Castagna, we used the Gassmann fluid substitution
theory modified by Mavko et al. (1995) without taking into account S-wave velocity in-
formation. Here, we used well-log data (three wells) from the Norne Field to calibrate the
empirical equations according to the predominant lithologies of the region, characterized
by a sandstone reservoir with intercalated shale formations, in order to compare the effi-
ciency of the calibrated relations with Castagna et al. (1993)’s relations and demonstrate
that the adopted methodology is a consistent alternative for predicting shear velocity. In
addition, we applied this methodology to a validation dataset (one well) from the North
Viking Graben, which is located at the North Sea region (south of Norwegian Sea).

2.2 METHODOLOGY

From the petrophysical point of view, the construction of mathematical models that
describe the combination of each rock constituent property is essential, which comes down
to volumetrically weigh the composition of the mineralogical matrix and the fluid content
of a formation. On the other hand, the simulation of the fluid substitution requires a
consistent formulation to be evaluated. At this point we resort to the Biot-Gassmann
theory, which is characterized as a tool applicable in well data, limited by the premises
discussed in Gassmann (1951) and Biot (1956).

In order to fully understand the methodology applied in this work, we provide a brief
description of some important tools of the effective-medium theory that are used to deter-
mine the elastic parameters (see Appendix A), which makes the fluid substitution analysis
and the application of the Greenberg-Castagna method possible. In addition, we used a
least squares fitting approach to calibrate VP -VS equations and a P-wave approximation
of Gassmann’s relation. Therefore, the S-wave hybrid modeling proposed here consists of
two main parts that adapt Greenberg-Castagna approach: 1) using a reference dataset
to calibrate empirical relations at brine saturated lithologies; and 2) applying P-wave
approximation on Gassmann substitution recipe to predict VS any saturation.
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2.2.1 Greenberg-Castagna method

To estimate the S-wave velocity (VS) from other petrophysical parameters, Greenberg
and Castagna (1992) presented a mathematical model based on linear relations of VP ,
applied on brine-saturated multimineralic rocks. They used the coefficients presented in
Table 2.1, which satisfy the expression

VS =
1

2

{[ L∑

i=1

fi

Ni∑

j=0

aijV
j
P

]
+

[ L∑

i=1

fi

( Ni∑

j=0

aijV
j
P

)−1]−1
}
, (2.1)

where L is the number of monomineralic components, fi is the volumetric fraction of the
i-th component, aij are the coefficients of the empirical regression, Ni is the degree of the
polynomial for i-th lithology constituent (mineral and fluids), V j

P and VS are the com-
pressional and the shear velocities (in km/s), respectively. Greenberg-Castagna equation
approximates the shear-wave velocity by a simple average of the arithmetic and har-
monic means of the constituent pure-lithology shear velocities, i.e., VP is used to estimate
VS = ai2 V

2
P + ai1 VP + ai0 for each single lithology and then the composite effective VS is

obtained (Avseth et al., 2005).
Obtained by Castagna et al. (1993), the empirical coefficients in Table 2.1 were cal-

culated for 100% brine saturation and, for this reason, to estimate VS in the in situ
condition it is necessary to apply fluid substitution calculations. The original procedure
of the method involves performing several iterations starting from assumptions of VP for
brine until reaching a significant convergence, thus ensuring the quality of the VS estima-
tion. The hybrid approach in question relies on an approximation of the relation (B–3)
(see Appendix B) to obtain the shear velocity from the compressional velocity, avoiding
the iterative processes.

Table 2.1: Regression coefficients of VS presented by Castagna et al. (1993)

Lithology ai2 ai1 ai0 R2

Sandstone 0 0.80416 -0.85588 0.98352
Limestone -0.05508 1.01677 -1.03049 0.99096
Dolomite 0 0.58321 -0.07775 0.87444
Shale 0 0.76969 -0.86735 0.97939

2.2.2 Petrophysical and elastic parameters obtained from well-log data

As well as elastic parameters, petrophysical ones play an important role on the appli-
cation of effective-medium models. There are some methods of extracting this information
from well-logs and, using complementary data (core analysis), it is possible to compute
accurate fractions of all rock constituents, but the use of wireline logs in isolation imply
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limited models. The conventional approach is to consider clay and a second constituent
(e.g. quartz for sandstone) on the matrix, as well as water and other fluid on the pores.
Taking into account that the clay content controls the radioactive response of geologic
formations, the fractions of the lithologic (mineral) components can be obtained based on
the gamma-ray log, using the equations

IGR =
GR−GRmin

GRmax −GRmin

, (2.2)

vshale = 0.33(2(2IGR) − 1), (2.3)

and
vsand = 1− vshale, (2.4)

where GRmax and GRmin are the maximum and minimum values evaluated from the
gamma-ray log (GR), vshale and vsand denote content of shale and fraction of sandstone,
respectively. Throughout the formations traversed in each well, the IGR (radioactivity
index) is calculated and then applied in the relation of Larionov (1969) (equation (3.5)),
which is coherent for old rocks..

Both velocities (in km/s) are evaluated from sonic slowness logs (in µs/ft), whose con-
version is performed according to the equation (2.5), as another important petrophysical
parameter, the total porosity (φ), that can be estimated from the compressional slowness
(∆tp):

V =
304.8

∆t
, (2.5)

and
φ =

∆tp −∆tmin
∆tfl −∆tmin

, (2.6)

wherein ∆tmin and ∆tfl are the traveltimes of the P-wave for mineral and fluid phases,
respectively. The constants (∆tp, ρ) used to compute all these parameters are shown in
Table 2.2, as well as the elastic moduli (K,µ) to be considered in the VS estimation.

Table 2.2: P-wave slowness (∆tp), density (ρ), bulk modulus (K) and shear modulus (µ) of
minerals and fluids used for modeling the rock effective properties (Mavko et al., 2009). (1): in
µs/ft. (2): in g/cm3. (3): in GPa.

Component ∆t
(1)
p ρ(2) K(3) µ(3)

Quartz 55 2.65 37 44
Clay minerals 89 2.58 21 7

Brine 185 1,1 3.2 0
Water 189 1 2.2 0
Oil 230 0.85 0.8 0
Gas 920 0.2 0.02 0
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2.2.3 Velocities’ polynomial regression

An essential part of this work is the determination of polynomial regression coefficients
that best fit the velocities for the (local) lithology analyzed here. In order to obtain a
model that can predict the shear velocity with greater accuracy, we use least squares
analysis, which consists of adjusting the S-wave to P-wave velocity logs adopting a linear
model described by a polynomial function. This method of curve fitting allows us to
obtain the coefficients of the polynomial (2.7) that best correlates VS to VP (minimum
error ε), which is represented in matrix terms by equation (2.8):

VS = anV
n
P + an−1V

n−1
P + . . .+ a1VP + a0 + ε, (2.7)




a0
a1
...
an


 = (XTX)−1XT




Vs1
Vs2
...

Vsm


 , (2.8)

where

X =




1 Vp1 . . . Vp
n
1

1 Vp2 . . . Vp
n
2

...
... . . . ...

1 Vpm . . . Vp
n
m


 , (2.9)

and each velocity log (VP and VS) contains m elements in depth. Based on vsand and
vshale the velocity logs of a given well are divided into two sets: one corresponding to the
clean formations and the other to the shaly formations. In these partitioned logs one can
apply this method of polynomial regression and thus calibrate the empirical relationships
for sandstones and shales. Although the maximum polynomial order is given by m−1, in
practice we use an arbitrary order as low as possible to accurately describe the dataset.

2.2.4 P-wave approximation of Gassmann’s relation

To estimate the changes in acoustic velocities, when pore content is altered, it is
necessary to know both velocities on an initial saturation condition in order to apply
the Gassmann’s transformation based on the bulk moduli of the rock and its components
(matrix and fluids). In the scenario in which only the VP log is regular, it becomes feasible
to use the P-wave modulus (M) based on the equations

M = ρbV
2
p = K +

4

3
µ, (2.10)

and
Msat

Mmin −Msat

=
Mdry

Mmin −Mdry

+
Mfl

φ(Mmin −Mfl)
, (2.11)
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where the subscripts sat, dry, min and fl indicate saturated rock, dry rock, mineral
matrix and fluid, respectively. Also called longitudinal modulus, M expresses the com-
pressive strength in a state of uniaxial stress (direction of propagation of the P-wave). All
the elastic moduli are given in GPa here.

According to Mavko et al. (1995), the approximate transformation (2.11) makes it
possible to achieve results similar to the original transformation (B–3). By means of
this relation it is possible to use a straightforward application of the weighted average of
the empirical relations of VP -VS (Greenberg-Castagna equation) in the condition of brine
saturation (without requiring a convergence analysis), reducing VS prediction cost without
significant quality losses. Starting from a given in situ condition, denoted by index (1),
the fluid replacement recipe to be applied for the purpose of estimating Vs (using local
empirical relations) in a saturated brine condition, denoted by index (2), consists of:

1. Extract the P-wave modulus in the initial condition:

M
(1)
sat = ρ

(1)
b

(
V

(1)
P

)2
;

2. Use the approximate Gassmann’s transformation to calculate the new P-wave modulus:

M
(2)
sat =

x

(1 + x)
Mmin

x ≡ M
(1)
sat

Mmin−M
(1)
sat

− M
(1)
fl

φ(Mmin−M
(1)
fl )

+
M

(2)
fl

φ(Mmin−M
(2)
fl )

;

3. Calculate the new density: ρ(2)b = ρ
(1)
b + φ(ρ

(2)
fl − ρ

(1)
fl );

4. Obtain the P-wave velocity for brine saturation:

V
(2)
P =

√√√√M
(2)
sat

ρ
(2)
b

;

5. Estimate the velocity of the S-wave for brine saturated formation using the local em-
pirical relations and, finally, obtain it for the in situ condition:

µ
(1)
sat = µ

(2)
sat = ρ

(2)
b

(
V

(2)
S

)2
,

and

V
(1)
S =

√√√√µ
(1)
sat

ρ
(1)
b

= V
(2)
S

√√√√ρ
(2)
b

ρ
(1)
b

.

This procedure highlights the theoretical side of the proposed model, which, when tak-
ing into account the approximation of Gassmann’s relation for P-wave modulus, becomes
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simpler than the methodology proposed by Greenberg and Castagna (1992). Figure 2.1
shows a flowchart summarizing the methodology developed in this work.

Learning-Data
Lithology

(Constituents
Estimation)

In situ VP and VS
Fluid Substitution
(Full Gassmann)

Brine VP and VS

Polynomial
Regressions

Estimated
Coefficients

Test-Data

Lithology
(Constituents
Estimation)

In situ VP
Fluid Substitution

(P-wave Gassmann)

Brine VP

Calibrated Relation Brine VS

In situ VS

Figure 2.1: Modeling flowchart. First, the empirical relationships are calibrated using the
learning-data from a reference well (left branch): the model is calibrated starting with VP ,
VS and the rock constituents (mineral fractions, fluid saturations, porosity and density). Then,
they are tested on other wells to predict the in situ shear velocity (right branch).

2.3 RESULTS AND DISCUSSION

The two sets of well-log data analyzed in this work were from the North Sea region.
The first was from the Norne Field and the second from the Viking Graben field. These
two fields are located at the Norwegian continental shelf. Related to the Norne field,
Figure 2.2 shows a map illustration of the Norne location. This picture is modified from
Gjerstad et al. (1995), which has a geological description of this oil field. Figure 2.3 shows
that the Viking Graben is a nort-south-trending linear trough straddling the boundary
between the Norwegian and UK sectors of the northern North Sea. This Figure is modified
from Brown (1991) and Glennie and Underhill (1998). In these two last literatures, it can
be found a detailed description about the geologic features of the Viking Graben area.

The available dataset from the Norne field contains geophysical logs of several wells
operated by the Norwegian oil company Statoil ASA, since the beginning of the explo-
ration at the Norne Field, which is located in the Norwegian Sea. Three of these were
selected to evaluate the proposed shear velocity prediction model, which we called Well
A, Well B and Well C (as shown in Figure 2.4). The inputs for the calibration process and
the prediction tests can be divided in: petrophysical parameters (porosity, shale volume
and water saturation), which are used to quantify lithology and fluid content; and elastic
parameters (bulk density, P- and S-wave velocities), which are the main elements for fluid
substitution. The depths of fluid interfaces identified on these boreholes are shown on
Table 2.3 and displayed over the logs in Figure 2.5. Hydrocarbons affect the porosity logs
making neutronic porosity readings inferior to the estimated density porosities, which is
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more noticeable on the shallow thin region of Well B where the difference between the
porosities is larger due to gas presence. Furthermore, the Norne Field reservoir rocks con-
sist of interbedded Lower-to-Middle Jurassic sandstones and shales (Statoil, 2001), which
we consider the two constituents (quartz and clay) to be evaluated from the gamma-ray
readings.

Figure 2.2: The Norne Field in an area of Norwegian continental shelf. This oil field is located
in the blocks 6608/10 and 6508/1 in Nordland II. This picture is modified from Gjerstad et al.
(1995).

Figure 2.3: The black rectangle shows the area of the Viking Graben oil field. This Viking
Graben map was modified from Brown (1991) and Glennie and Underhill (1998).
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Table 2.3: Order of the fluid contacts along the investigated wells (in m) (Statoil, 2001). GOC:
Gas-Oil Contact. OWC: Oil-Water Contact.

Interface Well A Well B Well C

Reservoir Top 2849.0 3348.0 2706.5
GOC absent 3361.5 absent
OWC absent 3487.0 2808.0

Figure 2.4: Depictional 3D model of the Norne Field with well locations (adapted from Yasin
(2012)). Well A (F-1H) is the learning data. The test data is from Well B (C-3H) and Well C
(E-3H).

2.3.1 Calibrated empirical relations

Well A presents the porous fraction predominantly filled by water (see Figure 2.5a)
along its entire depth interval and, for this reason, it was adopted as a reference-well to
calibrate the empirical relationships for sandstone and shale of the Norne Field formations.
In order to apply the polynomial regressions in the reference-well, it was necessary to
estimate the sonic velocities in the 100% brine condition. Only for this well, the P-wave
modulus transformation wasn’t applied, since the goal was to obtain the best possible
adjustment and then to test it on the other two wells.

In this step, the Voigt-Reuss-Hill relations (Voigt, 1910; Reuss, 1929; Hill, 1963) (equa-
tions A–1, A–2 and their average) were used to calculate the density and the bulk modulus
of the fluid, taking into account the water saturation to define the volumetric fractions
of the formation fluids, and also to estimate the modulus of the matrix, considering the
fractions of quartz and clay. In order to determine if the saturated rock bulk modulus
was consistent with the fluid saturation of this reference-well, the Hashin-Shtrikman limits
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were applied (equation A–3). It was possible to note that the elastic bounds were satisfied
both before and after the fluid exchange simulation (see Figure 2.6a and 2.6d). At first,
quartz is assumed to be the stiffest component of the formation and water as the softest
constituent, and then the pore content is replaced by brine.
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Figure 2.5: Logs of (a) Well A, (b) Well B and (c) Well C. The following parameters for each
log are: (from left to right) P-wave traveltime (∆tP ), S-wave traveltime (∆ts), bulk density (ρb),
gamma ray GR, shale volume (vshale), porosity (φ) and water saturation (sw).
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Figure 2.6: Effective bulk modulus of wells A (a,d), B (b,e) and C (c,f). In the top (a,b,c) are
the bulk modulus with initial in situ saturation and in the below (d, e, f) are the bulk modulus
correspondent to brine saturation.
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Figure 2.7 shows the results of the calibration: a parabola for sandstones and a straight
line for shales. As expected, a smaller deviation between measured and estimated veloci-
ties obtained by the local (calibrated) relation is observed when compared to the deviation
obtained using the original Greenberg-Castagna relation (see Figures 2.8 and 2.9). The
high coefficients of determination (R2) reflect this good fitting, as observed in the regres-
sions with the velocity sets of each lithology (which were selected according to clay and
quartz fractions in the rock matrix).

It was also verified the coherence of the S-wave velocity data in relation to the litholo-
gies, since the more shaly the formation, the lower the velocity is (due to the lower elastic
modulus of shales in comparison to clean sandstones). For sandstone layers the largest
observed variation of VS is between 1.76 and 3.17 km/s, while for shales the longest
variation is between 1.52 to 2.37 km/s.

2.3.2 Shear velocity predictions

Based on the local relations shown in the Figure 2.7, the last stage of this work was
performed. We verified the quality of these equations when applied together with the fluid
substitution (using approximation (2.11)), i.e., to analyze how reliable it is to predict VS
from VP with this hybrid model. For the test wells, Mmin, Mfl and ρfl were calculated
using the elastic bounds in a manner similar to the calibration step: obtaining Msat in
the brine saturation condition after applying the fluid substitution recipe and calculating
VS by means of the elastic moduli definitions. In order to verify the physical consistency
of the elastic properties for the initial and final saturation situations, we used the limits
defined by Hashin-Shtrikman.

The bulk modulus distribution on Well B shows values over the upper limit of quartz-
water and the quartz-brine mixtures (see Figure 2.6b and 2.6e), which can be related to
calcite cements that are stiffer than quartz (Castagna et al., 1985), but the majority of
the values estimated for the two saturation conditions are scattered within the delimited
region by the curves HS+ and HS−. We also noticed that here the substitution of gas for
brine leads to more significant changes in the bulk modulus than in wells A and C, where no
oil-gas contact is observed. In the case of Well C, the results were even more satisfactory,
showing a good behavior of Ksat for the formations in which the fluid substitution (oil,
water or gas) by brine was simulated. Samples that are above the upper limit may be
associated with formations where calcareous or carbonate content dominates in relation
to quartz, which is softer than the minerals calcite and dolomite (see Figure 2.6c and
2.6f). For bulk modulus values near or below the lower limit, either the hydrocarbons
predominate in the fluid phase of the formation or the presence of softer clays in the
matrix is more expressive.
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For comparative purposes, we chose to estimate the shear velocity logs with both the
empirical equations of Castagna et al. (1993) and the calibrated relation. The predictions
are shown in velocity logs (in blue or red) overlaid by the measured velocity (in black)
in Figure 2.8, and then presented in scattering diagrams of estimated versus measured
velocity in Figure 2.9. It is observed that the prediction of VS is reasonable in both cases,
with the highest accuracy being observed when applying the local relation (calibrated
relation), except for the Well C, wherein the local relation error was slightly greater than
the Greenberg-Castagna estimation error for some intervals.
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Figure 2.8: Comparisons between VS logs (measured) with logs predicted using Greenberg-
Castagna (GC) and the calibrated relation (CR) for (a) Well A, (b) Well B and (c) Well C. Here,
the calibrated relation is our modification of Greenberg-Castagna equation.
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In general, for well C, despite presenting abrupt deviations (in the depth intervals of
2715-2735 m and 2920-2985 m), the difference between estimated and measured values
is considerably small, leading to high prediction quality. The abrupt deviations can be
related to irregular velocity measurements due to formation fractures. According to Fertl
and Rieke (1980), in case of reservoirs located in regions where there is a strong presence
of fractures, e.g. Norne Field, the occurrence of these variations is expected. This effect
can also be noted on gamma ray logs, which in the investigated wells present intervals
of great instability. On the VS log of Well B, one large spike (3360 m) and another of
median amplitude (3710 m) are noted, which contain the velocities that reach (or exceed)
2.5 km/s. Also, the highest VS values on Well C are near two median spikes (2825 and 2875
m), indicating that the correlation between the measured and predicted shear velocities
loses quality due to this anomalous sonic measurements.
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Figure 2.10: The RMSE values for wells (a) A, (b) B and (c) C. The curves in blue color (GC:
Greenberg-Castagna) and red color (CR: Calibrated Relations) shows the error between the
predicted and measured VS logs.

In quantitative terms, the Root Mean Squared Error (RMSE) was evaluated for all
wells. Figure 2.10 shows the RMSE logs, i.e., the difference in results between the conven-
tional Greenberg-Castagna method and the calibrated relation. As expected, the RMSE
logs for the reference-well, using the calibrated relation, presented values smaller than
the RMSE of the other wells and than the RMSE associated to the Greenberg-Castagna
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equation. For the other two wells in which the local relation was tested, the consistency of
the fluid substitution analysis is observed (the velocities predictions honored the Hashin-
Shtrikman bounds). Although not as small as the erros associated with the reference-well,
the test-wells’ RMSE values are small enough to justify the application of a shear velocity
estimation using the compressional velocity (for formations of known lithology and fluid
saturation).

2.3.2.1 Verification on Viking Graben data

We performed a velocity estimation using the calibrated relations (presented at Figure
2.7) on a well-log dataset from the northern North Sea basin, more specifically the North
Viking Graben. In this field, many of the hydrocarbon reservoirs are located in the Middle
Jurassic sandstones, which present complex geology (heavily faulted and overpressured
zones). The analysis conducted on this well consisted of verifying the quality of fitting
when using empirical relations derived from other data. First, it can be noted that the
predicted logs on Figures 2.11a and 2.11b fitted the measured S-wave velocity log with
similar quality, revealing a better estimation by the relations calibrated from the Norne
Field data (red curve at Figure 2.11c). However, the RMSE values obtained on this
validation data indicate a lower fitting quality than the predictions observed on the Norne
test wells B and C. Although the Viking Graben and the Norne region have geological
properties in common, this accuracy difference supports the fact that local relations should
be derived if a larger dataset is available.
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Here it is important to mention that equations derived from regression coefficients,
but non-polynomial models, were used by De Sousa et al. (2015) to estimate VS for the
Norne field. There, the first decimal point (in km/s) was questionable for some logs and,
therefore, presented lower precision than that achieved with the hybrid model discussed
here. In this context, the use of hybrid models, which takes into account lithology and
saturation levels, is undoubtedly an effective alternative to find empirical relations of VS
as a function of VP .

2.4 CONCLUSIONS

Whether of theoretical, empirical or heuristic nature, several physical-mathematical
models were developed with the purpose of creating alternatives to obtain the S-wave
information from parameters better measured by well-logging tools. The VP -VS relations
are a fundamental instrument in this context, because this pair of attributes allows us a
better understanding of the dynamics of a reservoir, describing from lithological aspects
to geomechanical features. The combination of the empirical factor with the theoretical
aspect studied in the present work (adapting the model of Greenberg and Castagna (1992))
led to a hybrid model that, although restricted to the situation where there is information
about lithology and fluid saturation, showed strong predictive efficiency, fulfilling the role
of S-wave velocity estimator.

The feasibility of our results was demonstrated through the hybrid method application
in logs of three wells. For all the Norne studied wells, the root-mean-square error (RMSE)
between the real value and the estimated by the empirical formulations was lower for our
calibrated relation than for the conventional Greenberg-Castagna equation. Moreover,
the model application on the Viking Graben data resulted in a loss of fitting quality
in comparison to the Norne predictions, but still better than Castagna et al. (1993)’s
relations. This results are further confirmation that the Greenberg-Castagna relation
should be adapted for each formation where it is being used.

As mentioned previously, in most cases, empirical equations are efficient to estimate
VS (with limitations), even in cases when not all petrophysical parameters are available.
The application and use of S-wave information extends from seismology to hydrocarbon
reservoir characterization. From the Rock Physics point of view, VP/VS ratio is an impor-
tant ingredient to tell us indirectly about matrix material, state of saturation, degree of
consolidation, pore geometry, etc. In the best case scenario, where it is possible to acquire
shear wave sonic data, there is a real chance that the data needs to be regularized (to
reduce seismic interpretation risks), another reason why such calibrated empirical models
are important.

We believe that one limitation of this work is the application of this methodology for
carbonate reservoir. The application of conventional effective medium theories (Voigt-
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Reuss-Hill or Hashin-Shtrikman) and fluid substitution theories (such as Gassmann or
Biot) on carbonate environments show many pitfalls. A generalization that we suggest as
a future work would be to perform this analysis using effective medium theories that take
into account a background medium with heterogeneities. For this proposal, we suggest the
use of theories such as the Differential Effective Medium (DEM) or the Self-Consistent
Theory (SCT) coupled with Gassmann or Biot equations (or others fluid substitution
theories for heterogeneous media, e.g. Brown-Korringa).
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Formation evaluation techniques are the key to understand subsurface rocks properties
from well-logs, especially those drilled in hydrocarbon exploration wells. Knowledge of
the parameters related to different types of rocks is traditionally used in forward deter-
mination of lithology, porosity and water saturation, which can be refined by calibrating
the input models. In this work, we perform well-log interval linear inversion with respect
to formation density in a real case. The method is based on a highly overdetermined
problem, which assumes a homogeneous distribution of petrophysical parameters through
stratigraphic units and is applied in conventional reservoir rocks from the Norne Field
(offshore Norway). Bulk density, gamma-ray and neutron porosity logs are employed in a
workflow that relies on layer-by-layer least-squares regressions to estimate matrix, shale
and fluid apparent densities, considering shale volume and porosity empirical calculations
from the input logs. Furthermore, the application in two wellbores resulted in geological
consistent individual densities in most intervals, except for a gas-bearing zone observed
in one of the boreholes, where porosity uncertainty caused anomalous variation in grain
and fluid densities.

3.1 INTRODUCTION

Extracting lithology and pore fluid information from well-log data is essential to hy-
drocarbon exploration. Sonic, density and neutron measurements are routinely used for
this task, for example, because they exhibit a strong porosity dependence and still hold
some sensitivity to rock matrix as discussed by Ellis and Singer (2007). Density-sonic,
neutron-sonic, neutron-density, matrix identification (MID) and other cross plotting meth-
ods consist in well-known interpretation tools for lithology determination, which are use-
ful to obtain preliminary estimations of reservoir rocks composition (Ijasan et al., 2013;
Schlumberger, 2013). These graphical techniques, however, are improper for complex for-
mations (multimineralic rocks, thinly bedded, invaded formations, etc). In these cases,
numerical approaches can be applied to investigate the mineral constituents and forma-
tion fluids from well-logs, such as neural networks and fuzzy logic, which are commonly
used to map electrofacies (Cuddy, 1997; Maiti et al., 2007; Bosch et al., 2013; Correia
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and Schiozer, 2016). Furthermore, deterministic linear inversion of petrophysical logs
is widely used to compute volumetric concentrations of assumed rock mineral and fluid
constituents, considering that there are linear relationships between these concentrations
and formation properties such as density, porosity and sonic traveltimes (Mayer, 1980;
Doveton, 1994; Heidari et al., 2012; Heidari et al., 2013).

The bulk density (ρb) is extremely important to the mentioned formation evaluation
methods, it is a rock property that can be accurately measured in the borehole environ-
ment by logging tools based on gamma ray scattering and the formation electron density
response, or obtained from laboratory core analysis (Schön, 2015; Tiab and Donaldson,
2015). Density also contributes to the seismic response of subsurface rocks, neverthe-
less, it is not direct obtained from seismic data and usually requires to be estimated
based on empirical models, such as the equations derived by Gardner et al. (1974) and
Lindseth (1979). In petrophysics, the total porosity of rocks can be obtained from the
formation density and then applied into core-log correlations and Archie (1942)’s law to
estimate, respectively, permeability and fluid saturations (Nelson, 1994; Kennedy, 2015).
From the seismic point of view, the product of density and velocity (impedance) de-
scribes subsurface layers’ contrast and is used to build earth’s reflectivity series, perform
AVO (amplitude variation with offset) and well-tie analyses (Castagna and Backus, 1993;
Chopra and Castagna, 2014; Macedo et al., 2017). Moreover, pore pressure prediction re-
quires density information to be achieved, specially to compute overburden stress (Zhang,
2011). Therefore, density plays an important role as a lithological descriptor in seismic
calibration, petrophysics and geomechanics.

In siliciclastic rocks, the formation density can be properly described as a combina-
tion of three main densities: matrix (ρma), shale (ρsh) and fluid (ρfl). There are different
approaches to estimate these individual densities from well-logs. Maiti et al. (2007) using
neural network modelling and Bosch et al. (2013) using the logical fuzzy method estimated
(indirectly) the main mineral on reservoir regions. In those works, the main goal was to
perform a qualitative analysis of lithofacies. Heidari et al. (2012), on the other hand,
introduced a non-linear joint inversion method to quantify the individual layer properties
of thinly bedded and invaded formations, that then was extended to carbonates (Heidari
et al., 2013). The conventional inversion methods for lithology evaluation focus on deter-
mining local volumetric concentrations of these constituents, assuming prior knowledge
of the individual densities. In contrast, here is employed an alternative linear inversion
approach to estimate interval values of ρma, ρsh and ρfl, that considers prior information
about volumetric concentrations derived from petrophysical logs (gamma-ray and ρb).
Applying the well-logging inversion procedure in a longer processing interval allows more
accurate solutions since the overdetermination ratio of the problem increases (Dobróka
and Szabó, 2001; Dobróka et al., 2016). Furthermore, we performed pre-analyses in a real
dataset from the Norne Field in order to determine precise density estimations for the
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studied reservoir zones and verify the feasibility of ordinary least-squares solutions in this
well-logging inversion.

3.2 METHODOLOGY

The statistical estimation of mineral and fluid densities is established from an assump-
tion that is also valid in conventional deterministic well-logs inversion methods: there are
representative linear models between volumetric concentrations and individual properties
of each petrophysical constituent (Mayer, 1980). For multimineralic rocks the bulk density
is expressed by the linear relation

ρb =
n∑

i=1

vi ρi , (3.1)

where vi and ρi are the volumetric fraction and the individual density of the i-th con-
stituent (n phases, including pore fluids), respectively. This model is known as a general
density mixing law that can be used to calculate the density of different types of rocks
and makes possible to simulate ρb logs. As remarked by Vernik (2016), these individual
densities are representative of a rock layer in situ if the formation is laterally homo-
geneous on at least a 0.25 m scale and vertically homogeneous on at least a 0.5m to
0.75m scale, i.e., the volume around the wellbore wall is homogeneous regarding the
depth of investigation and vertical resolution of density log. Sandstone matrix density
from 2.64 g/cm3 to 2.68 g/cm3; limestone matrix of 2.71 g/cm3; dolomite matrix density
from 2.84 g/cm3 to 2.9 g/cm3; water-bearing formation fluid density from 0.95 g/cm3 to
1.25 g/cm3; and hydrocarbon-bearing formation fluid density from 0.1 g/cm3 to 1 g/cm3

are typical ranges/values assumed in these calculations (Kennedy, 2015). Adopting grain
density for shales is a more complex task due to the wide range of clay minerals.

In this paper we assume a siliciclastic hydrocarbon-bearing rock model that consists
of a solid matrix, shale and pore fluids. Thus, the particular case of equation (3.1) that
describes clastic reservoirs is written as

ρb = (1− vsh − φ) ρma + φ ρfl + vsh ρsh , (3.2)

where vsh and φ are the shale volume and the effective porosity, respectively. The vol-
umetric fractions of mineral and fluids can be calculated depth-by-depth using volume
weighted models of various well-logs (e.g. neutron porosity and sonic traveltime). How-
ever, these deterministic methods require reliable log responses across pure lithologies and
fluids to define the individual properties. Instead of solving simultaneously several linear
equations to estimate mineral and fluid weighted fractions from different log responses
(multivariate regression), the present work focus on finding a least-squares solution to
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equation (3.2) for a set of bulk density readings in layer interval, considering known local
relations between well-log measurements that provide proper inputs of vsh and φ for the
studied wells, as well as a consistent reservoir zonation. In the following sections are
detailed important data processing steps and the least-squares fitting procedure used to
estimate layer-by-layer values of ρma, ρsh and ρfl.

3.2.1 Data preparation

The interval inversion workflow relies on three imperative well-logs to perform for-
mation evaluation: ρb, gamma-ray (GRlog) and neutron porosity (φn). The first two are
direct employed to quantify mineral and fluid densities, while the third is used as an in-
terpretation parameter (explication of anomalous density predictions). The logging tools
that record these subsurface properties in wellbores are exposed to several factors that
might contaminate the data with noise, such as instrument error, borehole conditions and
human error. In order to reduce the noise in the data we adopted the statistical tech-
nique proposed by Tukey (1977), that allows the detection and removal of outliers, which
are observations that deviate far from the mean data value. This method considers two
reference samples with respect to dataset range divided into four equal-sized groups: the
first (Q1) and the third (Q3) quartiles. Q1 is defined as the middle number between the
smallest number and the median of the dataset, whereas Q3 is the middle value between
the median and the highest number. In practice, they are the medians of lower and upper
halves of a dataset, which means that about 25% of the measures are below Q1 and 25%
above Q3. The interquartile range (IQR) can describe the data when there are possible
extremities that distort it and is calculated by applying the quartiles in the following
expression:

IQR = 1.5 (Q3 −Q1) . (3.3)

These statistical parameters are then used to identify as an outlier any measurement
outside the interval [Q1 − IQR,Q3 + IQR], which is called Tukey’s fences. Removing
this kind of data samples is useful to improve the correlation between the input logs.

After studying the statistical features and filtering the outliers in the well-logs, the
next step of data preparation consisted in the calculations of rock volumetric fractions
using empirical approaches. First, the gamma-ray index (IGR) is obtained applying the
relation

IGR =
GRlog −GRmin

GRmax −GRmin

, (3.4)

where GRmin is the mean minimum gamma-ray measurement, usually computed trough
clean sandstones or carbonates, and GRmax is the mean maximum gamma-ray value
typically observed trough shales. Although the normalization of GRlog result a function
strong dependent on shale volume, assuming a linear relation between IGR and vsh may



25

lead to overestimations. The gamma-ray index log must be corrected according to rock
age using the following non-linear relationship:

vsh = a (2b IGR − 1) , (3.5)

where a and b are empirical coefficients. Larionov (1969) evaluated these coefficients for
Tertiary (unconsolidated) rocks and for older (consolidated) rocks. For Jurassic formations
a and b are, respectively, 0.33 and 2. In addition to shale volume, we calculated the
effective porosity from ρb using the linear model

φd = c+ d ρb , (3.6)

where the coefficients c and d are estimated from core-log correlations (Yan, 2002) for
each formation in the Norne Field case.

3.2.2 Density multiple linear regression

The functional model (3.2) would provide an exact value of ρb only if the set of pa-
rameters φ, vsh, ρma, ρfl and ρsh are exactly measured. Even though good noise reduction
techniques are employed, such as outliers removal, it is natural that real datasets hold
measurement errors. An statistical model is one that acknowledges such errors. Rewriting
the weighted density law, a multiple linear regression model of 2 independent predictor
variables (φd and vsh) is defined:

ρb = x0 + x1 φd + x2 vsh + r , (3.7)

where the regression coefficients x0, x1 and x2 are equivalent to matrix density, the dif-
ference between fluid and matrix densities and the difference between shale and matrix
densities, respectively. From a collection of n data points, the residuals ri between bulk
density observations and modeled density can be written as
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. (3.8)

To do invert this system the quantity of the measurements (n) must be greater than
the number of independent variables (2), otherwise the problem becomes underdetermined
and may need to be constrained using a priori information. We ensure that this problem
is significantly overdetermined when chose to fit the well-logs through known reservoir
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zones (greater than the depth sampling interval). Therefore, the individual densities
can be estimated by solving the matricial equation (3.8) in a least-squares sense, i.e.,
computing x0, x1 and x2 that minimize the sum of squared residuals. Thus, we adopted
the ordinary least-squares estimator

x = (ATA)−1AT y , (3.9)

which is the solution to the problem formally expressed by

min
x
‖y −Ax‖22 , (3.10)

where superscript T indicates the matrix transpose and ‖·‖2 denotes the L-2 or Euclidean
norm. In the end, interval mineral and fluid densities are obtained from the regression
coefficients computed by equation (3.9), taking into account the simple algebraic opera-
tions used to transform model (3.2) into (3.7), as shown in the last output in Figure 3.1.
In the next section are presented the results obtained by applying this inversion approach
in a real dataset.

Bulk Density (ρb)
Gamma Ray (GR)

Neutron Porosity (φn)

(1) Well-Log Data

Stratigraphic Boundaries

Outliers Removal

(2) Data Pre-Analysis Shale Volume:
vsh = a (2b IGR − 1)

Density Porosity:
φd = c+ d ρb

(3) Petrophysical Calculations

min
x

∥∥∥∥∥∥∥∥∥




ρb1
ρb2
...
ρbn


−




1 φd1 vsh1

1 φd2 vsh2

...
...

...
1 φdn vshn


 .



x0
x1
x2




∥∥∥∥∥∥∥∥∥

2

2

(4) Layer-by-layer Least-Squares Regression
Matrix Density:

ρma = x0

Fluid Density:
ρfl = x1 + x0

Shale Density:
ρsh = x2 + x0

(5) Estimated Properties

Figure 3.1: Workflow adopted in this study. The input well-logs (1) are pre-processed in depth
intervals of reservoir zones that are delimited according to geological information (2). Based
on empirical relations, the volumetric fractions are calculated (3). For each reservoir layer the
density multiple linear model is solved on a least-squares sense (4), that results estimations of
matrix, fluid and shale densities (5).

3.3 RESULTS AND DISCUSSION

The dataset used in this work comprises well-logs from the Norne Field benchmark
case, which are provided by Statoil and managed by the Norwegian University of Science
and Technology (NTNU). Formed as a result of Permian and Late Jurassic - Early Cre-
taceous rifting episodes, the Norne Field is located in the mid-Norwegian Sea, specifically
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on a flat horst block in the Norwegian continental shelf (Rwechungura et al., 2010). The
field preserved hydrocarbons in Middle and Early Jurassic sandstones consolidated from
post-rift sediments deposition, which includes reservoir zones subdivided into the Garn,
Ile, Tofte and Tilje Formations. The Not Formation acts as a barrier between the adjacent
zones (Garn and Ile) due to its shale sealing properties. Additionally, as outlined in Figure
3.2, there are a shale (Melke Formation) and a heterolithic sandstone interbedded with
mudstones, shale and coals (Åre Formation) that delimit the reservoir, the first behaving
as the cap rock and the second as the reservoir basal rock. More descriptions about Norne
stratigraphy are detailed in Dalland et al. (1988) and Swiecicki et al. (1998).

We applied the interval density estimation in two Norne wellbores (6608/10-C-3H
and 6608/10-E-3H), which here are named Well A and Well B. The available data in-
clude gamma-ray, bulk density and neutron porosity well-logs, as well as derived logs of
density porosity and shale volume. Porosity calculations considering water-based mud
(WBM) system were performed using equation (3.6), taking into account coefficients (c
and d) obtained from cross-plots of overburden-corrected core porosity vs. density log
(Verlo and Hetland, 2008). The well zonation was adopted following the Statoil (2001)’s
report, which considered 15 zones based on combined sequence stratigraphic and lithos-
tratigraphic criteria via core and biostratigraphic information.

In Table 3.1 is displayed the distribution of the depth intervals for both wells, consid-
ering the top of Åre Formation as the reservoir base. Moreover, there are measured depth
variations between the boreholes because Well A was drilled in the southern region of the
field, whereas Well B was perforated in the northerly Norne segment. Increased erosion
to the north of the field makes the reservoir thickness to vary from to 267.9 m to 188.4
m, especially affecting Ile and Tilje formation heights.

Figure 3.2: Norne Field location and sequence of geological formations. Garn, Ile, Tofte and
Tilje comprise the main reservoir zones (modified from Maleki et al. (2018)).
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Table 3.1: Reservoir zonation of the investigated wells (Statoil, 2001). The stratigraphic tops
(expressed in m) are in Measured Depth (MD) and layer thicknesses in True Vertical Depth
(TVD).

Zone
Well A Well B

Top MD Thickness TVD Top MD Thickness TVD

Garn3 3348 6.9 2706.5 9.2
Garn2 3355.2 10.6 2716 14.5
Garn1 3366.2 10.8 2731 10.6
Not 3377.4 10.2 2742 6.7
Ile3 3388 26.1 2749 15.4
Ile2 3415 21.1 2765 6.3
Ile1 3436.8 3.2 2771.5 3.4

Tofte4 3444 7.3 2775 9.6
Tofte3 3447.5 30.6 2785 28.3
Tofte2 3479 8.3 2814.5 5.3
Tofte1 3487.5 15.1 2820 13.4
Tilje4 3503 25.3 2834 2.4
Tilje3 3529 24.4 2836.5 16.7
Tilje2 3554 46.1 2854 30
Tilje1 3601.2 32.1 2885.5 23.3
Åre 3634 - 2910 -

In Figure 3.3 are shown ρb, GR and φn well-logs used in the lithological quantification
process. The solid black curves corresponds to the raw data which were subjected to
the Tukey’s method in order to reduce the noise before performing the inversion. We
evaluated the Tukey’s fence for each reservoir zone to identify outliers and discard its
respective data points, depicted as red crosses in Figure 3.3. Initially, there were 2287
and 1629 samples in Well A and Well B, respectively. In this same order, 168 and 121
data points were detected and eliminated. Most amount of outliers was related to the bulk
density readings, while gamma-ray accounts for a small portion of them. These two logs
(ρb and GR) affects directly the density regression outcomes, thereby we expected that
the correlations among the petrophysical fractions (vsh and φd) and formation density
increase after this data pre-processing. The variation of those correlations are presented
in Table 3.2, wherein the strong dependence between ρb and φd is verified for both wells
(coefficient of determination R2 higher than 0.98). Also, we noted that approximately 40%
of bulk density variability is explained by vsh (R2

a values of 0.4032 and 0.3921). Neutron
porosity readings are important to interpret possible effects of rock composition in the
estimated densities, albeit not employed in the minimization problem.
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Figure 3.3: Well-logs in the reservoir intervals of each studied well. Tracks per well (from left to
right): bulk density, gamma ray and neutron porosity. The outliers identified for each reservoir
zone indicates data points that were discarded for the inversion procedure.

Table 3.2: Observed model (bulk density) response to shale volume and density porosity before
(R2

b) and after (R2
a) outliers removal (in terms of coefficient of determination).

Log
Well A Well B

R2
b R2

a R2
b R2

a

φd 0.9752 0.9868 0.9868 0.9872
vsh 0.3851 0.4032 0.3204 0.3921

The estimated interval matrix, fluid and shale densities are presented in a log form
in Figures 3.4 and 3.5. A first look into the results indicates a notable accuracy of the
proposed density model (minimal residuals per layer), except for the top Garn zone in
Well A, where perhaps the rock properties weren’t properly evaluated (upper layer in
Figure 3.4). A fluid density of 1.53 g/cm3 was obtained for the top of Garn Formation,
which is quite unrealistic in terms of rock porous composition, since the most dense brines
reach 1.4 g/cm3 of density. In Garn3 zone, the estimated shale density of 2.39 g/cm3 can
be accounted for kaolinite composition, but matrix density of 2.43 g/cm3 is too low for
sandstones. However, there is a significant difference between φn and φd in this interval,
which can be related to gas-saturated pores and, hence, explains why the computed
individual properties aren’t representative of the wellbore near formations. Also, the
bulk density log is more affected by mud-filtrate invasion in a gas reservoir drilled with
water-based mud due to the large density contrast between the formation fluid and the
mud-filtrate.
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Figure 3.4: Input well-logs and interval estimated properties for Well A: formation density,
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Figure 3.5: Input well-logs and interval estimated properties for Well B: formation density,
porosity, shaliness, matrix density, fluid density and shale density. In the last track are the
misfits for each interval, in terms of root-mean-squared error.

Another set of interval densities diverged from the estimations in Well B, on the base
of Ile Formation. Ile1 is a thin layer of 3.4m (see Table 3.1), where ρma, ρfl and ρsh

estimates of 2.59 g/cm3, 1.17 g/cm3 and 2.89 g/cm3 were calculated, respectively. These
densities indicate a brine-saturated layer, with quartz/feldspar matrix and dense clay
minerals (glauconite/chlorite). The estimated shale density in Ile2, above of Ile1, also
corresponds to dense clay minerals (2.85 g/cm3), whilst the matrix and fluid are related
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to quartz (2.65 g/cm3) and water (1.04 g/cm3). In Table 3.3 are shown the density values
estimated in the investigated wells.

Table 3.3: Interval density estimates and average fractions per zone. Densities in g/cm3.

Zone
Well A Well B

ρma ρfl ρsh φd vsh ρma ρfl ρsh φd vsh

Garn3 2.43 1.53 2.39 0.31 0.03 2.67 0.99 2.68 0.28 0.08
Garn2 2.69 0.93 2.70 0.15 0.10 2.67 1.00 2.66 0.25 0.11
Garn1 2.67 1.02 2.67 0.20 0.21 2.69 0.95 2.66 0.21 0.16
Not 2.67 0.93 2.68 0.12 0.37 2.69 0.94 2.66 0.13 0.67
Ile3 2.67 1.02 2.67 0.24 0.02 2.66 1.02 2.68 0.25 0.05
Ile2 2.67 1.01 2.66 0.27 0.01 2.65 1.04 2.85 0.30 0.01
Ile1 2.67 1.01 2.66 0.23 0.02 2.59 1.17 2.89 0.31 0.02

Tofte4 2.67 1.00 2.67 0.21 0.06 2.68 0.96 2.71 0.25 0.08
Tofte3 2.66 0.98 2.67 0.28 0.01 2.65 1.00 2.66 0.28 0.03
Tofte2 2.65 1.01 2.65 0.20 0.06 2.66 0.99 2.66 0.24 0.08
Tofte1 2.71 1.02 2.66 0.26 0.01 2.70 1.03 2.68 0.24 0.01
Tilje4 2.66 0.98 2.65 0.16 0.06 2.65 1.01 2.65 0.13 0.05
Tilje3 2.65 1.01 2.65 0.22 0.02 2.65 1.00 2.65 0.23 0.02
Tilje2 2.66 0.95 2.66 0.12 0.25 2.66 0.99 2.65 0.16 0.26
Tilje1 2.65 1.00 2.65 0.23 0.10 2.65 1.01 2.65 0.25 0.09

Figures 3.6 and 3.7 show the density multiple regression outcomes for each formation in
the studied wellbores, correlating the data to the shale content in the reservoir rocks. The
quality of fitting was more significant in Well B, where the calculated bulk density (ρcalb )
accuracy is verified in the RMSE values observed in each zone, which are less than 0.01
(misfits in Figure 3.5). In Well A, it can be noted some local dispersions in Garn and Tilje
formations, where ρcalb didn’t fitted the data. The first case is related the aforementioned
gas effect in the derived logs in Garn3, which led to overestimations for low ρobsb . There
are some underestimations for high bulk density values, which can be associated to a ρb
spike near the interface of Garn3 and Garn2 (3356m) (see Figure 3.4). In Tilje Formation
(Well A) bulk density was underestimated for the same reason, there are ρb spikes in Tilje4
(3505m) and Tilje2 (3555m), the first located in a clean reservoir zone and the second in
a shaly zone. In general, the model fitted the data with a good accuracy, specially in Ile
and Tofte reservoir zones, where vsh is minimum and and φd is maximum (see Table 3.3).

According to Rwechungura et al. (2010), about 80% of Norne Field oil is located at Ile
and Tofte formations, which has good reservoir properties such as the high pore volume
we observed in wells A and B. Reservoir intervals of good quality are also found in upper
part of Tilje and lower part of Garn formations, however, these zones are more laminated
and cemented (Verlo and Hetland, 2008). There are calcareous cemented layers within
Norne formations that explain some apparent matrix density values obtained through the
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interval inversion, which trends to 2.71 g/cm3 (calcite density). Furthermore, the diage-
netic interval of Norne reservoir indicates that the subsurface formations were subjected
to the transition from mechanical to chemical compaction, wherein clay minerals layering
(e.g. illite, smectite and kaolinite) may be accounted for gradual increases in ρsh (Correia
and Schiozer, 2016; Vernik, 2016).

2 2.2 2.4 2.6 2.8
2

2.2

2.4

2.6

2.8

bc
a

l  (
g
/c

m
³)

2 2.2 2.4 2.6 2.8
2

2.2

2.4

2.6

2.8

2 2.2 2.4 2.6 2.8
2

2.2

2.4

2.6

2.8

2 2.2 2.4 2.6 2.8

b

obs
 (g/cm³)

2

2.2

2.4

2.6

2.8

bc
a

l  (
g
/c

m
³)

2 2.2 2.4 2.6 2.8

b

obs
 (g/cm³)

2

2.2

2.4

2.6

2.8

0.2 0.4 0.6 0.8

v
sh

 (v/v)

Figure 3.6: Cross-plots of observed versus calculated bulk density for each formation of Well A.
The data is color scaled according to shale volume. Clean zones are mainly found in Ile and
Tofte formations.

2 2.2 2.4 2.6 2.8
2

2.2

2.4

2.6

2.8

bc
a

l  (
g
/c

m
³)

2 2.2 2.4 2.6 2.8
2

2.2

2.4

2.6

2.8

2 2.2 2.4 2.6 2.8
2

2.2

2.4

2.6

2.8

2 2.2 2.4 2.6 2.8

b

obs
 (g/cm³)

2

2.2

2.4

2.6

2.8

bc
a

l  (
g
/c

m
³)

2 2.2 2.4 2.6 2.8

b

obs
 (g/cm³)

2

2.2

2.4

2.6

2.8

0.2 0.4 0.6 0.8

v
sh

 (v/v)

Figure 3.7: Cross-plots of observed versus calculated bulk density for each formation of Well
B. The data is color scaled according to shale volume. Not and Tilje formations contains most
argillaceous zones.
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Analyzing the entire inversion results of Well A and Well B, it can be verified that
the combination of quartz grains and mixed-layer clays can explain the density of the
solid content of the studied formations, whereas water density can be accounted for the
pore content. Figure 3.8 shows the occurrence of individual densities calculated along the
defined zones for both wells. Interval density of 2.67 g/cm3 (Well A) and 2.65 g/cm3 (Well
B) are the most frequent matrix property. For shale, most of density counts range from
2.65 g/cm3 to 2.67 g/cm3 (Well A) and 2.66 g/cm3 (Well B). On the other hand, interval
ρfl estimates don’t properly reveal hydrocarbon saturation, albeit minimum values of
0.93 g/cm3 (Well A) and 0.94 g/cm3 (Well B) can be related to effective density of oil-
water mixture. Concentrations of hydrocarbon combined with formation water yield an
apparent fluid density that is expressed by

ρfl = Sw ρw + Shc ρhc (3.11)

where Sw, Shc, ρw and ρhc refers respectively to water saturation, hydrocarbon saturation,
density of formation water and density of reservoir hydrocarbon (the saturations sum to
unity, i.e., Shc = 1 − Sw). Furthermore, equation (3.11) is a relative simple model that
has some pitfalls associated to density and resistivity logs (e.g. mud-invasion effect pre-
diction). These uncertainties in shale and fluid densities exist due to the homogeneity
assumptions of the rock volume adjacent to borehole wall, which can be more affected by
the mud-cake in reservoirs penetrated by contrasting mud systems and, hence, contam-
inate the measurements in a scale depending on the resolution of logging tools (Vernik,
2016).
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3.4 CONCLUSIONS

The methods applied in formation evaluation conventionally estimate volumetric con-
centrations of rock constituents in different depth points separately, using several well-logs
and assuming rock-frame properties. As we proposed in this study, the well-logging in-
version problem can be approached using an ordinary least-squares estimator to evaluate
interval densities of solid and pore volume constituents in a real dataset. Although this
methodology has some limitations, we noted that the density multiple linear regression
led to accurate solutions (misfits average lower than 0.03) that are mostly in accordance
to downhole geology in the investigated wells. Gas saturation and mud-invasion effects
are particular drawbacks of this interval procedure, since density measurements may not
be representative of homogeneous media along the borehole zones in such conditions.

In general, the method was able to provide reliable estimates of layer individual densi-
ties based on prior information about Norne Field stratigraphic boundaries and volumetric
fractions (derived from empirical relations). The purport of our interval inversion appli-
cation was to perform a simple petrophysical evaluation of formation density of known
reservoir zones, nonetheless, there are more complex procedures that employ joint inver-
sion of well-logs to estimate both petrophysical parameters and formation boundaries. It
would be interesting to jointly invert bulk density with electrical resistivity, sonic and nu-
clear logs when available. Therefore, we suggest the studied workflow for initial estimation
of in situ rock layer properties, considering the great overdetermination of the interval
approach as an important advantage to speed up the characterization of hydrocarbon
reservoirs.



4 CONCLUSIONS

In the presented articles we investigated the estimation of two physical rock properties
that primarily are used to evaluate the reservoir quality. First, this work focused on the
determination of VP -VS equations that honor the mineral composition and the fluid con-
tent of downhole formations. Additionally, we considered the intrinsic linear relationship
among the bulk density, the rock frame and pore fluids in order to estimate the density of
the rock constituents, including its shale fraction. The accuracy of the shear wave velocity
hybrid model and the goodness-of-fitting of the layerwise density inversion applied to the
Norne Field dataset demonstrate that: (1) joint empirical correlations and model-based
theories is an efficient tool for deriving petrophysical logs; (2) in addition to the notable
dependence of rock effective properties on porosity (fluids), the perturbation on log re-
sponses caused by lithology (minerals) is properly accounted by volumetric rock models;
and (3) the solutions obtained through ordinary least-squares estimator consist of a simple
alternative to explain the well-logging data, which provides reasonable approximations to
real reservoir properties.

In the dissertation, specially when discussing the density interval inversion case (in
Chapter 3), we emphasized that the assumptions of the rock volumetric (layer) model
are suitable to the borehole environment as long as the homogeneity of the formation
adjacent to the wellbore wall is valid. In case the well measurements be affected by mud-
invasion, gas saturation or complex lithologies, more constrained models may be required
to explain the associated heterogeneities. Another observation that was highlighted in
the shear velocity prediction case (in Chapter 2), is that the applied bounding methods
and fluid substitution theory are free of assumptions about pore geometry and limited
to isotropic, linear, porous and elastic media. Therefore, geometric petrophysical models
(e.g. granular, capillary and inclusion types) and generalized formulation must be adopted
to evaluate carbonate reservoir and unconventional resources.

We believe that the approached log-based workflows have the advantages of being
quick and cost-effective alternatives to evaluate rock elastic properties. In practice, these
parameters are combined to other well-logs and core data to provide information about
porosity and hydrocarbon saturation, as well as on mechanical (e.g. elastic moduli and
pore pressure) and mineralogical typing for completion evaluation. Furthermore, in future
works it would be interesting to apply different log editing techniques for noise reduction
(such as despiking), analyze other empirical correlations among petrophysical parame-
ters (e.g. P-wave velocity to bulk density) and apply interval linear inversion to other
properties measured in situ (such as P-wave traveltimes).
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APPENDIX



A– MODELING THE EFFECTIVE ROCK ELASTIC

PROPERTIES

In practice, knowing the volumetric fraction and the properties of each rock constituent
is reasonable to evaluate the effective response of an specific porous medium. The concept
of elastic boundaries is related to the quantitative analysis of properties of different mate-
rial mixtures, describing domains to be satisfied by possible combinations of minerals and
fluids. The simplest models to establish the limits of rock properties are those of Voigt
(1910) and Reuss (1929), described by equations

EV =
n∑

i=1

Eifi, (A–1)

and
1

ER
=

n∑

i=1

fi
Ei
, (A–2)

where fi and Ei are, respectively, the volumetric fraction and the elastic property (e. g.,
bulk modulus) of the i-th constituent. Using the equation (A–1), for example, the density
of fluid in the formation is estimated, taking into account an uniform mass distribution.
Considering that in the fluid phase the stresses are uniformly distributed, the equation
(A–2) can be used to calculate the elastic modulus of fluid.

In terms of elastic moduli, the relation of Voigt (1910) represents the maximum stiff-
ness (isostrain condition), while the maximum compliance is indicated by the relation of
Reuss (1929) (condition of isostress). To estimate a specific elastic parameter, such as the
matrix bulk modulus, one can also use a simple arithmetic mean of these limits, known
as Hill (1963) mean.

Another possible window of elastic moduli of a mixture of two materials is described
by the expressions

KHS± = K1 +
f2

(K2 −K1)−1 + f1(K1 +
4

3
µ1)−1

, (A–3)

and
µHS± = µ1 +

f2

(µ2 − µ1)−1 + 2f1(K1 + 2µ1)/[5µ1(K1 +
4

3
µ1)]

, (A–4)

42



43

where (K1,µ1) and (K2,µ2) are the modulus pairs of each component, and f1 and f2

their respective volumetric fractions. These are the bounds of Hashin-Shtrikman (Hashin
and Shtrikman, 1963), which are very useful for evaluating the behavior of isotropic
elastic media and has a narrower window than the Voigt-Reuss bounds. Geometrically
interpreted as an arrange of spheres surrounded by a shell of different constitution, the
upper bound (HS+) is defined when the stiffest material termed as 1 forms the shell,
whereas the lower bound (HS−) is the opposite case (softest shell termed as 1 and stiffest
core termed as 2).



B– GASSMANN FLUID SUBSTITUTION THEORY

From the acoustic velocities (Vp and Vs) and the bulk density (ρb) it is defined the
volumetric shear modulus (µ) and bulk modulus (K), which are described by equations

µ = ρbV
2
s , (B–1)

and
K = ρb

(
V 2
p −

4

3
V 2
s

)
, (B–2)

where the first one quantifies the resistance of a material to tangential stress (changes of
shape) and the second the resistance to compression (change of volume), both expressed
in units of pressure (usually in GPa).

In order to evaluate the effect of fluid properties on acoustic velocities in saturated
porous rocks we use the model proposed by Gassmann (1951). The Gassmann model
is based on following assumptions: 1) the rock presents predominant homogeneity and
isotropy; 2) porosity is effective (fully connected pores); 3) the fluids that fill the pores
are poorly viscous; 4) the system is closed; 5) there is no chemical interaction between the
rock skeleton and the fluids; and 6) there is no relative movement between the constituents
of the rock in relation to the movement of the formation.

Such assumptions imply in the limitation of the Gassmann model for low frequency
regime, which was later improved by Biot (1956) that considered the anomalous effects
resulting from the propagation of waves at high frequencies. For both cases, Gassmann or
Biot, the notion of dry rock is indispensable, corresponding to the hypothetical condition
that the fluids contained in the pores of the rock skeleton are drained. Gassmann deduced
a general relationship between the dry rock and saturated rock moduli, in the most
common form expressed by

Ksat

Kmin −Ksat

=
Kdry

Kmin −Kdry

+
Kfl

φ(Kmin −Kfl)
, (B–3)

where the subscripts sat, dry, min and fl indicate the moduli of saturated rock, dry rock,
mineral matrix and fluid, respectively.

Starting from the velocity and density measurements in a given initial condition, de-
noted by the index (1), the following recipe is adopted for the purpose of determining
velocities after fluid change:

1. The elastic moduli are extracted from the velocities of the initial condition:

K
(1)
sat = ρ

(1)
b

(
V (1)
p

2 − 4

3
V (1)
s

2
)

and µ
(1)
sat = ρ

(1)
b V 2

s ;
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2. Using Gassmann’s relation the new bulk modulus is calculated:

K
(2)
sat =

x

(1 + x)
Kmin

x ≡ K
(1)
sat

Kmin −K(1)
sat

−
K

(1)
fl

φ(Kmin −K(1)
fl )

+
K

(2)
fl

φ(Kmin −K(2)
fl )

;

3. The shear modulus does not alter: µ(2)
sat = µ

(1)
sat;

4. The new density is calculated: ρ(2)b = ρ
(1)
b + φ(ρ

(2)
fl − ρ

(1)
fl );

5. Finally, we obtain the velocities in the condition denoted by the index (2):

V (2)
p =

√√√√√K
(2)
sat +

4

3
µ
(2)
sat

ρ
(2)
b

and V (2)
s =

√√√√µ
(2)
sat

ρ
(2)
b

.


