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RESUMO

O conhecimento sobre as propriedades físicas das fissuras -ou fraturas- presentes nas rochas
é importante para a indústria no processo de exploração de hidrocarbonetos. Várias teo-
rias de meio efetivo são construídas para descrever as propriedades macroscópicas de um
meio (da rocha, ou reservatório neste caso) em termos das propriedades de seus consti-
tuíntes (a matrix e as inclusões da rocha, neste cenário). Uma teoria de meio efetivo
muito conhecida é o modelo de Eshelby-Cheng, que é o modelo estudado analizado neste
trabalho. A análise é feita testando velocidades elásticas e parâmetros de Thomsen -como
função da densidade de fissuras para valores fixos de razão de aspecto e como função da
razão de aspecto para valores fixos de densidade de fissuras- preditos pelo modelo contra
dados adquiridos de amostras de rocha sintética. Neste trabalho, nós visamos estudar
as capacidades do modelo de Eshelby-Cheng quando aplicado em rochas fissuradas com
matrizes porosas e anisotrópicas (verticalmente isotrópicas com eixo de simetria verti-
cal: Vertical Transversely Isotropic - VTI), testando algumas modificações propostas às
equações com o objetivo de ajustar o modelo para esse tipo de meio. Os dados usados
para testar o modelo foram obtidos de 17 amostras de rocha sintética, sendo uma sem
fissuras e 16 fissuradas, dado que as fissuradas são dividas em quatro grupos com qua-
tro amostras cada, com cada grupo possuindo rochas fissuradas de forma que as fissuras
possuem a mesma razão de aspecto, porém densidades de fissuras diferentes, para rochas
dentro do mesmo grupo. Nestas amostras, medidas de transmissão de pulso ultrassônico
foram realizadas para se obter as velocidades experimentais usadas para testar o mod-
elo teórico. Como não foi possível adquirir dados de velocidades como função da razão
de aspecto para valores fixos de densidade de fissuras, nós realizamos interpolações dos
dados experimentais para estimar estes valores. As velocidades efetivas e os parâmetros
de Thomsen, estimados com o modelo de Eshelby-Cheng, foram calculados usando três
formulações propostas para a porosidade de fissuras: uma proposta por Thomsen, a se-
gunda (que depende somente da densidade de fissuras) e a terceira (que depende tanto
da densidade de fissuras quanto da razão de aspecto, assim como a proposta por Thom-
sen) são propostas neste trabalho. As comparações feitas entre velocidades elásticas e
parâmetros de Thomsen preditos pelo modelo e estimados dos dados experimentais via
interpolação mostram que a terceira formulação produz melhores ajustes (menores valores
de erro médio quadrático) entre o modelo e o dado experimental para todas as faixas de
razão de aspecto e densidade de fissuras.
Palavras-chave: Geofísica. Modelagem (Geofísica). Ondas sísmicas - Velocidade.



ABSTRACT

The knowledge about rock cracks - or fractures - physical properties is important for the
industry in the process of hydrocarbon exploration. Various effective medium theories
are constructed in order to describe the macroscopic properties of a medium (the rock, or
reservoir in this case) in terms of the properties of its constituents (the background matrix
of the rock and the inclusions, for our scenario). A very well known effective medium
theory is the Eshelby-Cheng model, which is the one we analyze in this work. The analysis
is done testing elastic velocities and thomsen parameters - as function of crack density for
fixed values of aspect ratio and as function of crack aspect ratio for fixed values of crack
density - predicted by the model against data acquired from synthetic rock samples. In this
work we aim to study the Eshelby-Cheng model capabilities when applied to rocks with
porous and vertical transversly isotropic (VTI) backgrounds, testing some modifications
proposed to the equations in order to fine tune the model for this kind of medium. The
data used to test the model were obtained from 17 synthetic rock samples, one uncracked
and 16 cracked, the latter divided in four groups of four samples each, each group with
cracks having the same aspect ratio, but with the samples having different crack densities.
In these samples, ultrasonic pulse transmission measurements were performed in order
to obtain the experimental velocities used to test the model. As was not possible to
acquire data for velocity as function of aspect ratio for fixed values of crack density, we
performed interpolations of the experimental data to estimate these velocities. Eshelby-
Cheng model effective velocities and Thomsen parameters were calculated using three
formulations proposed for the crack porosity: one proposed by Thomsen, the second one
(which depends only on the crack density) and the third one (which depends on the crack
porosity and the aspect ratio, just like Thomsen’s proposal) are proposed in this work.
The comparisons between elastic velocities and Thomsen parameters - as function of crack
aspect ratio, for fixed values of crack density - predicted by the model and estimated from
the data via interpolation showed that the third formulation produced better fittings
(lower root-mean-square errors) between model and experimental data for all ranges of
aspect ratio and crack density.
Keywords: Geophysics. Modeling (Geophysics). Seismic waves - Velocity.
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1 INTRODUCTION

The Earth’s Crust has a complex distribution of geological features as, for example:
fractures, cracks, faults, folds, etc (7; 10). Over the years, the analysis of crack physical
characteristics (length, aperture, orientation, and aspect ratio) and their related prop-
erties (e.g., porosity, density, and intensity) as well as their influence on seismic waves
propagation have attracted considerable interest in the academy and industry. This oc-
curs because, in certain reservoirs, called non-conventional, hydrocarbon production is
dependent on induced permeability caused by hydraulic fracturing in the cracked medium
(31; 35). The knowledge about crack features, mentioned earlier, is an important stage
in the process of hydrocarbon recovering, e. g., the presence of oriented cracks may in-
duce an anisotropic behavior in a medium (11; 25). Regions with oriented cracks have
their seismic wave velocities varying with both propagation and polarization directions
(13; 29; 35). Thus, the analyses of the behavior of seismic wave velocities in a cracked
medium can be used as a tool for reservoir characterization (17).

Effective elastic properties, VP and VS, of anisotropic rocks can be estimated by the-
oretical and experimental approaches. From a theoretical point of view, we can highlight
effective models created for: transverselly cracked medium with low crack density (16; 22)
and high crack density (9; 23; 20) to investigate the effect of scale fracture length, equant
porosity (33; 8) and the host medium’s weak anisotropy (19). Experimentally, many of
effective medium theories cited previously have been investigated by several works. Assa’d
et al. (2, 3); Boadu and Long (6), Rathore et al. (27) and Ding et al. (15) investigated the
Hudson (22)’s effective medium theory for low crack density medium through remarkable
experiments. Tillotson et al. (34) and Amalokwu et al. (1) using synthetic crack porous
sandstones, constructed from the improved technique developed by Rathore et al. (27),
investigated the effective Chapman (8)’s model applied into frequency-dependent seismic
anisotropy in synthetic fractured reservoir. More recently, Henriques et al. (21) com-
pared predictions of effective elastic parameters -in anisotropic cracked media- by (22)
and Eshelby-Cheng’s effective models with experiments performed in cracked samples
showing different aspect ratios in their composition. They observed that, in general, the
Eshelby-Cheng’s effective model showed a good agreement with the experimental results.

Even though many works have been performed in order to investigate the feasibility
of applying effective models into ultrasonic (2; 27; 1; 21), well-sonic (37) and seismic
(5; 4) datasets, a better understanding of limitations and applicability of these effective
models is still required, especially in the case where the background presents a certain
degree of anisotropy. In this work, we investigate the application of Eshelby-Cheng’s
effective model for porous cracked samples with different crack aspect ratios, 0.08 to 0.52,
and different crack densities, 0.01 to 0.102, considering the background with a weak VTI
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anisotropy. For this study, we constructed sixteen synthetic porous cracked samples and
one uncracked sample for reference. The cracks were simulated physically with void spaces
created by chemical leaching of styrofoam penny-shaped inclusions. Compressional and
shear wave velocities as well as anisotropic parameters were estimated experimentally and
compared with the results obtained via effective Eshelby-Cheng’s cracked model. From
both the theoretical and experimental results we observed a decreasing of elastic velocities
and an increasing of anisotropy behavior with increasing of crack density, for all groups of
aspect-ratio samples. From the comparisons between theoretical and experimental results
we observed that the performance of Eshelby Cheng’s model in predicting the anisotropic
velocities and parameters, in a cracked medium, for different crack’s aspect ratios depends
on the porosity equation chosen to feed the effective model.

Due to technical difficulties in the experiment, it was not possible to construct sam-
ples with different aspect ratios but same crack densities, therefore it was not possible
to acquire the data necessary to obtain the experimental velocities as function of aspect
ratio. In this work we aim to fill this gap, by estimating velocities as function aspect ratio
- for fixed crack densities - via interpolation of the original data, and then to perform
the comparisons between data and model predictions (again testing the alternatives for
the model porosity) in order to complete the previously-mentioned investigation of the
model. Furthermore, as the velocities predicted by the model fed with a crack porosity
dependent only on crack density (and not on crack aspect ratio) showed some mathemat-
ical inconsistencies in certain regions of the parameter-space constituted by crack density
and crack aspect ratio (the two main variables of the problem), we propose in this work a
third formulation for the crack porosity, adapted from Thomsen’s formulation and from
our previous formulation, which is dependent on both cracks aspect ratio and density and
tries to incorporate to the crack porosity the fact that the background is porous.



2 THEORETICAL BACKGROUND

Based on an expansion of Padé approximation, Cheng (9) improved the mathematical
formulations of Eshelby (16) and Hudson (22) effective models. With this expansion,
Cheng (9) solved the problem of divergence at high crack densities. Mathematically, the
Eshelby-Cheng’s model is given by

Ceff
ij = C

(0)
ij − φC(1)

ij , (2.1)

where C(0)
ij is the isotropic elastic coefficient, associated to the host material, φ is the

medium porosity and C
(1)
ij is the first order correction due to crack inclusions. In this

model, the input parameters used to feed the model are: rock sample density (ρisototal),
isotropic P-wave velocity (V iso

P ), isotropic S-wave velocity (V iso
S ), crack density (ε), and

crack aspect ratio (α).
As mentioned above, our background medium shows a weak VTI anisotropy due to

the layering deposition. In this way, we propose to modify the equation 2.1 to

C
eff(dry,sat)−mod
ij = C

(0)−V TI(dry,sat)
ij − φeff(dry,sat)C(1)−mod

ij , (2.2)

where C(0)−V TI(dry,sat)
ij is the elastic coefficient for the VTI background medium. The

C
(1)−mod
ij and φeff are the first order correction of the modified elastic moduli and the

medium porosity, respectively.
An important issue raised in this work relies on the conversion of effective elastic

parameters, output from Eshelby-Cheng’s model- Ceff(dry,sat)−mod
ij , into effective elastic

velocities. Figure 2.1 shows a flowchart to use Eshelby-Cheng’s model. It is important
to mention that this flowchart can be used for other stiffness coefficient models based on
information of background and inclusions. The first block of this flowchart is related to the
input information of the host, or background, medium obtained from elastic parameters
-VP , VS and ρ- as well as the physical parameters of inclusions -α, ε, φref , and φc-. The
second block is feed by information of block (1). It provides the output obtained from
equation 2.2, i.e., the effective elastic stiffness coefficients. These coefficients can be used
to estimate the Thomsen parameters, as represented by block (3), or combined with
the theoretical effective density, they can be inverted on theoretical elastic velocities, as
represented by block (4).

Here, block (4) of Figure 2.1 shows the influence of theoretical effective sample density
to obtain the effective velocities. As shown in block (2), also in Figure 2.1, the effective
theoretical density for dry condition depends on the effective sample porosity. The total

3
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effective porosity can be estimated by

φ
eff(exp)
total = φ

ref(exp)
matrix + φeffc , (2.3)

where φref(exp)matrix is the porosity of uncracked sample estimated experimentally and φeffc is
the crack porosity. Experimentally, the crack porosity (φeffc ) can be estimated from

φeffc = φ
eff(exp)
total − φref(exp)matrix , (2.4)

where "(exp)" means the measured porosity by a porosimeter.
By definition of effective model, we can not use the equation 2.4 to find the φeffc .

Because, the effective model is feed only from ε, α, density and velocities of the reference
sample. On the other hand, one possible approach is the one done by Thomsen (33), who
estimates the crack porosity by

φc = φThomc =
4

3
πεα, (2.5)

where ε is the crack density and α is the crack aspect ratio. This equation was formulated
taking into account many assumptions. Among them, the medium should show weak
anisotropy (low crack density), the cracks should show low crack aspect ratio and should
not interact with each other, i.e., should have no regions of intersection. In our case, there
is no interaction between cracks and the aspect ratio ranges from 0.08 to 0.52. In other
words, most of our crack aspect ratios are higher than 0.1.

Another approach is to use the geometrical features of the cracked samples to estimate
the effective crack porosity. This leads to

φc = ε(1− φrefmatrix), (2.6)

and
φefftotal = φrefmatrix + ε(1− φrefmatrix), (2.7)

where φrefmatrix is the experimental reference sample porosity and ε is the crack density, for
this we consider the theoretical effective crack porosity as the crack density minus the
contribution of primary porosity, i. e., ε(1− φrefmatrix).

Figure 2.2 shows experimental values, as black crosses, of sample density as function
of sample crack density for all samples depicted in the Figure 3.1. The lines are the
theoretical density given by

ρefftotal = ρmin(1− φefftotal) + ρflφ
eff
total, (2.8)

where the φefftotal can be obtained from equations 2.3 and 2.5 or, the one proposed in this
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Figure 2.1: Workflow used to calculate the effective theoretical velocities and Thomsen
parameters. Block (1) shows the input parameters, obtained from elastic parameters
(VP , VS and ρ) measured in the background reference sample as well as the physical
parameters of inclusions (α, ε, φref and φc). Block (2) shows the output obtained from
equation 2.2, i.e., the effective elastic stiffness parameters. These coefficients can be
used to evaluate the Thomsen parameters, as represented by block (3), or combined with
the theoretical effective density, they can be inverted on theoretical elastic velocities, as
represented by block (4).



6

work, equation 2.7. As it can be noted, the effective density equation 2.8 that uses the
equation 2.7, shown in the black curve, better predicts the effective density when compared
with the experimental values for the dry condition. In case of using the Thomsen (33)’s
crack porosity equation the reasonable agreement with the experimental values occurred
only for α = 0.2.

Moreover, we propose an additional formulation, which combines both of the crack
porosities previously shown:

φc =
4

3
πε(1− φo)α, (2.9)

which is a linear function of α and ε, just like the first formulation, but tries to incorporate
the effect of the background porosity - to be more precise, to exclude the influence of the
background porosity from the crack porosity. The applications of the adapted models are
summarized in the following workflow, which also describes the measurements needed to
calculate the input parameters that, in turn, are used in equation 2.2 in order to get the
effective elastic stiffness coefficients.
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Figure 2.2: The black crosses show the experimental bulk density as a function of the
crack density for the 16 cracked samples. To estimate the theoretical density we used
equation 2.8. The red, green, blue and magenta solid lines show the theoretical densities
computed by equation 2.8 with the total effective porosity φefftotal obtained using equation
2.5. The black line shows the theoretical densities computed by equation 2.8 with the
porosity obtained using equation 2.7. The best fit between the estimated and experimen-
tal densities occurred for the theoretical porosity estimated by equation 2.7. Using the
Thomsen (33)’s porosity equation, only in case of α = 0.2, a reasonable fit between theory
and experiments can be observed.



3 METHODOLOGY

3.1 EXPERIMENTAL SETUP

The construction of the synthetic rock samples as well as the ultrasonic measure-
ments were performed at the "Dr. Om Prakash Verma" Petrophysics and Rock Physics
Laboratory (PRPL) at the Federal University of Pará, Brazil.

3.1.1 Sample Preparation

The samples were constructed based on the method developed by Santos et al. (30).
From a mixture of water, sand (65 %) and cement (35%), seventeen porous samples
were constructed under controlled condition. On these samples, sixteen are anisotropic,
VTI background with cracks, and one is purely VTI without inclusions. These sixteen
anisotropic cracked samples were divided in four groups, each with four samples, with
different crack aspect ratio. During the construction of the layered sample with styrofoam
penny-shaped inclusions, before laying down each one of the styrofoam holder layers, a
small vertical stress is applied onto the mixture (mentioned earlier) with the help of a steel
buffer to ensure layer interface flatness. This process of applying pressure perpendicularly
to the layer interfaces causes a preferential grain orientation -due to packing- in each of
the layers, inducing small anisotropy in the background: the γ Thomsen (32) parameter
is about 5 %. To create penny-shaped voids, a chemical leaching using paint thinner was
performed. All samples including other test samples were immersed in paint thinner for
around 24 hours. These test samples were cut in order to verify the absence of styrofoam
at the cracks after leaching. As the styrofoam is a polymer made by 98 % of air and 2
% of polystyrene (26), after the leaching a practically zero amount of polystyrene mass
remains inside the fracture. The sample crack density was estimated by the modified
Hudson (22)’s equation given by

ε = Ni
πhir

2
i

Vm
, (3.1)

where Ni is the total number of penny-shaped inclusions, hi is the aperture (thickness) of
the inclusion, ri is the radius of the inclusion and Vm is the model volume occupied only
by cracks.

The aspect ratio of a form is the ratio between two different dimensions of it, for our
cracks, considering its cylindrical form, the aspect ratio is

α =
hi
Di

,

where hi and Di = 2ri are the crack aperture and diameter, respectively.

8
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Table 3.1: Sample parameters description (part I): D = sample diameter; H = sample
height; hi = crack aperture; N = number of inclusions. The separation between crack
planes was 5 mm.

Sample D (mm) H (mm) hi (mm) N α ε ρdry ρsat φ
Reference 38.00 59.00 0 0 0.00 0.0000 1.9460 2.0560 0.1100
α1ε1 38.00 53.00 0.50 54 0.08 0.0092 1.9260 2.0451 0.1191
α1ε2 38.00 53.90 0.50 72 0.08 0.0138 1.9159 2.0396 0.1237
α1ε3 38.00 51.10 0.50 90 0.08 0.0181 1.9065 2.0346 0.1281
α1ε4 38.00 51.10 0.50 90 0.08 0.0238 1.8939 2.0277 0.1338
α2ε1 38.00 55.50 1.25 18 0.20 0.0110 1.9220 2.0430 0.1210
α2ε2 38.00 54.10 1.25 30 0.20 0.0188 1.9050 2.0338 0.1288
α2ε3 38.00 55.70 1.25 66 0.20 0.0401 1.8584 2.0085 0.1501
α2ε4 38.00 52.50 1.25 96 0.20 0.0618 1.8108 1.9826 0.1718
α3ε1 38.00 52.50 2.00 18 0.32 0.0185 1.9054 2.0340 0.1286
α3ε2 38.00 51.31 2.00 36 0.32 0.0380 1.8630 2.0110 0.1480
α3ε3 38.00 51.83 2.00 54 0.32 0.0564 1.8228 1.9891 0.1663
α3ε4 38.00 50.81 2.00 72 0.32 0.0767 1.7784 1.9650 0.1866
α4ε1 38.00 61.15 3.75 36 0.52 0.0518 1.8328 1.9946 0.1618
α4ε2 38.00 60.60 3.75 48 0.52 0.0696 1.7937 1.9734 0.1797
α4ε3 38.00 61.00 3.75 60 0.52 0.0865 1.7569 1.9534 0.1965
α4ε4 38.00 61.60 3.75 72 0.52 0.1028 1.7213 1.9341 0.2128

For values of aspect ratio much smaller than one, the cylindrical cracks look like discs
or low aspect ratio penny shaped cracks, this is our case. For accentuated values of aspect
ratio, greater than one, the cylindrical cracks are considered as needle forms. As spheres
have aspect ratio equal to one, cracks that exhibit aspect ratio close to one are considered
approximated by spheres.

Figure 3.1a shows the construction of four samples of group (1) which the crack aspect
ratio was 0.08. In the same figure, different number of inclusions per layer means different
crack densities. As it can be noted, as required by Eshelby-Cheng’s model, there is no
interaction among the cracks (styrofoam penny-shaped inclusions). The crack density of
all samples as well as the crack aspect ratios are depicted in the Table 3.1. The sample
in a cylindrical shape, as seen in Figure 3.1b, was obtained from a plugging machine
from CoreLab instruments. Figure 3.1c shows a photograph of all seventeen samples
investigated in this work. In each sample group, the crack density is changing according
to Table 3.1. Among many parameters, the sample porosity and the sample density are
shown in the Table 3.1. The samples’ densities were calculated from their mass, weighted
by a balance with precision of ±0.02 g, and their volume, obtained from the samples’
dimensions and the relation for the volume of a cylinder. The samples’ porosities were
measured by a helium porosimiter of CoreLab (reference is Ultra-pore 300).
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c)

Figure 3.1: (a) Sample construction of a group of samples with inclusion’s aspect ratio
equal to 0.08. (b) Cylindrical samples (plugs) are obtained by a plugging machine. c)
Photograph of all samples used in this work. The samples are divided by the aspect ratio
of their inclusions, forming four groups (α1 = 0.08, α2 = 0.2, α3 = 0.32, α4 = 0.52) of
four samples each, plus a reference -with no inclusions- sample identified as REF in the
image. The experimental crack density (ε), aspect ratio (α) as well as the dry sample
density-ρb and porosity (φ) are shown in the Table 3.1.
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3.1.2 Ultrasonic measurements

We performed the transmission measurements using a 500 kHz S-wave transducer
that allows registering both P- and S-waveforms in a single trace. The sampling rate per
channel for all measurements was 0.01 µs. We also used a pulse-receiver 5072PR and
a pre-amplifier 5660B from Olympus and a USB oscilloscope of 200 Ms/s from Hantek
(reference DSO 3064). Figure 3.2a shows the picture of experimental setup used in this
work. Our transducer has an intrinsic delay time of 0.14 µs (28) in its signal, which must
be taken into account when estimating the wave velocities. The complete description
of ultrasonic experimental setup including the frequency source spectra is described in
Santos et al. (28) and in Henriques et al. (21). The source and receiver transducers were
placed on opposite sides of the synthetic rocks, separated by their lengths, in this case,
sample diameter or height. To ensure that the propagation of the wave was in the desired
region of the samples, the transducers were placed at the center of either side. This was
made for both wave modes of propagation (see Figure 3.2b).

From the first arrival pickings of the acquired P- and S-waveforms we calculated the
P- and S-wave velocities. We obtained the five experimental velocities using three P-wave
traces - tP (θ) and two S-wave traces - tS(ϕ), from equations

VP (θ) =
D

tP (θ)−∆tdelay
, (3.2)

and
VS(ϕ) =

LY
tS(ϕ)−∆tdelay

, (3.3)

where D, LY and ∆tdelay are the sample diameter (distance of P-wave propagation), the
longitudinal height (distance of S-wave propagation) and the delay time due to the P
and/or S-wave transducers, respectively. It is assumed that the velocities obtained via
this procedure are phase velocities, due to the fact that the transducers are wide and their
diameters are comparable with sample sizes (Dellinger and Vernik). As we are dealing
with phase velocities, they can be easily inverted to obtain the coefficients of the stiffness
tensor. For P-wave velocities, the traces recording the θ = 0o, 45o and 90o corresponding
to the propagation along the Z axis, along the bissectrix of Z and X axes, and propagation
along the X axis, respectively. The polarization of ϕ = 0o correspond to the fast S-wave
(S1 or SH) and ϕ = 90o corresponds to the slow S-wave (S2 or SV). Figure 3.2c shows the
sketch of the directions and polarizations of P- and S-wave propagation to record the P-
and S-wave seismograms. The axes X, Y and Z are the reference axes on the samples,
the XY plane corresponds to the crack planes, while the Z axis is perpendicular to them.
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Figure 3.2: (a) Picture of the ultrasonic system setup used in this work. (b) Experimental
arrangement of the transducers, in the samples, for P- and S- wave acquisitions. S1 and
S2 indicate the faster and slower S-wave polarizations, respectively. PZ indicates P-wave
propagation in the Z direction. c) Experimental sketch of wave propagation direction and
polarization to obtain the P- and S-waveform records. The angle θ is the angle between
the direction of propagation of the P-wave and the Z axis, while ϕ is the angle between the
direction of propagation of the S-wave and the Z axis. For the P-wave, the propagation
is radial changing from θ = 0o (Z direction) to θ = 90o (X direction) and for S-wave, the
propagation is in the Y direction and the slow and fast polarizations correspond to ϕ = 0o

(X direction) and ϕ = 90o (Z direction), respectively.



4 RESULTS

In this chapter, we start showing the results of the ultrasonic experiments from P- and
S-waves first arrival pickings. The time delays for the P- and S-wave transducers, 0.14
µs for both, were subtracted from the picked traveltimes. Using the corrected traveltimes
and the distance between the transducers (sample diameter for P-wave and sample height
for S-wave), wave velocities were calculated using equations 3.2 and 3.3. From these
velocities, we calculated the Thomsen parameters (ε, γ and δ) for all samples considering
the possible errors due to measurements of length, margin of error = ± 0.02 cm, and
traveltime picking, margin of error = ±0.02 µs.

4.1 ANALYSIS OF MODEL AS A FUCTION OF CRACK DENSITY

4.1.1 Elastic velocities

From first arrival picking on P- and S-waveforms, such as shown in the Appendix A
7.1, P- and S-wave velocities were estimated. Table 4.1 shows the values of P- and S-wave
velocities calculated for dry condition. From a graphical point of view, Figure 4.1 shows
the three P-wave velocities, mentioned before, as function of crack density (ε) for different
crack aspect ratios: α = 0.08, 0.20, 0.32 and 0.52. In general, the best fitting of Eshelby-
Cheng’s predictions occurs for low crack densities (ε < 10%), this happens for all crack
aspect ratios. As it can be noted in the blue curves of Figure 4.1, there is a tendency to
crack aspect-ratios 0.08 and 0.2 being better predicted for Eshelby-Cheng’s model using
the crack porosity equation given by φThomc = 4

3
αε. For theoretical estimation (green

curve) using the crack porosity equation ε(1 − φrefmatrix), the best theoretical predictions
rely on the higher aspect-ratios: 0.32 and 0.52.

With the exception of the P-wave propagation in the X-axis, the other two P-wave
velocities (in the directions 45o and 90o) show a remarkable decrease with increasing of the
crack density and aspect ratio. Both the theoretical and experimental values follow the
same trend, however, the distance between them became significant when crack density
is higher than 3 % for all crack aspect ratios. Related to the P-wave propagations, the
fitting between experimental and theoretical curves is the best for VP (θ = 90o), i. e., wave
propagation parallel to the crack plane (less scattering) and the worst for VP (θ = 0o), i.
e., wave propagation perpendicular to the crack plane (more scattering). When fed by
the porosities of equation 2.6 Eshelby-Cheng’s model shows the best adjustment with
experimental values.

Figure 4.2 shows the two S-wave velocities, fast and slow, as function of crack density
(ε) for different crack aspect ratios (α). The theoretical prediction of VSH(ϕ = 0o) (green
curve) using the crack porosity of equation 2.6, shows a good agreement with experimental

13
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Table 4.1: Experimental P- and S-wave velocities for dry condition.

Sample V dry
P0o (m/s) V dry

P45o(m/s) V dry
P90o(m/s) V dry

SH (m/s) V dry
SV (m/s)

Reference 4194 4231 4260 2267 2159
α1ε1 4102 4171 4257 2265 2146
α1ε2 4032 4155 4254 2264 2137
α1ε3 3997 4134 4251 2262 2134
α1ε4 3938 4102 4250 2258 2122
α2ε1 4079 4165 4256 2261 2143
α2ε2 3983 4116 4253 2258 2131
α2ε3 3762 3986 4248 2256 2094
α2ε4 3574 3847 4236 2255 2065
α3ε1 3985 4123 4259 2256 2128
α3ε2 3771 3992 4249 2253 2098
α3ε3 3606 3883 4243 2252 2067
α3ε4 3431 3769 4237 2252 2031
α4ε1 3634 3908 4242 2254 2073
α4ε2 3453 3819 4238 2252 2045
α4ε3 3305 3689 4231 2251 2019
α4ε4 3163 3652 4225 2250 1992
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Figure 4.1: P-wave velocities (VP0o , VP45o and VP90o) as function of crack density for differ-
ent aspect ratios (α = 0.08, 0.2, 0.32, 0.52) assuming dry condition. The red circles show
the experimental P-wave velocities. The blue and green curves show the P-wave velocities
estimated by Eshelby-Cheng model with the crack porosity calculated via equations 2.5
and 2.6, respectively.
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results for all crack aspect ratios and crack densities. As can be noted, the predicted
velocity (blue curve) using equation 2.5 for the crack and effective porosity shows an
underdetermination relative to the experimental values. This behavior can be related
to anomalous decreasing of ρefftotal (see Figure 2.2) due to increase of theoretical effective
porosity, as shown in Figure 4.3, as the crack density and aspect ratio increase. As
expected, the theoretical and experimental S-wave velocities related to the polarization
perpendicular to the crack plane decreases as aspect ratio and crack density increase.
This behavior was observed by Henriques et al. (21) for cracked models made using epoxy
resin and rubber penny-shaped inclusions.

As it was observed for P-wave velocities, in general the S-wave velocity predictions
show acceptable fitting with experimental values, in two regimes of crack aspect-ratios:
0.08 and 0.2. For 0.08 and 0.2, the theoretical predictions show best fitting when the
crack porosity is given by equation 2.5 and for crack aspect ratio of 0.32 and 0.52, the
best prediction occurs when the model is fed by the crack porosity of the equation 2.6.
By observing equation 2.5, we can infer that small crack aspect ratios (α <0.1), i. e.
thin cracks, need to be geometrically specified by the aperture and length and for higher
aspect-ratio cracks, it loses the physical sense of very thin cracks.

4.1.2 Thomsen Parameters

Figure 4.4 shows the estimated and measured Thomsen parameters, γ, ε and δ, as
function of crack density. From a general point of view, both experimental and theoretical
values increase with crack density, for all crack aspect ratios as expected. According to
Figure 4.4, the best Thomsen (32)’s parameter predictions occurred for crack aspect ratios
0.08, using equation 2.5 (blue curve), and 0.2 using equations 2.5 and 2.6 (both green and
blue curves), both for crack density values smaller than 4 %. For α = 0.32 the acceptable
agreement between experimental and theoretical comparisons occurred when the crack
density was lower than 7 %, using 2.6 (in green line). As observed, in the P and S-wave
velocity predictions, there is a performance range of each crack porosity equation. For
the crack aspect ratios below 0.2, the estimative based on equation 2.5 is better than
the estimative performed using equation 2.6. For crack aspect ratios higher than 0.2 the
opposite occurs.

About Thomsen parameters γ and ε, for aspect ratios below 0.32, they were those that
presented the best fitting between the experimental values and theoretical predictions.
The theoretical prediction of δ parameter as function of crack density shows an unstable
behavior related to the increasing of crack aspect ratio (see Figure 4.4). This can be
related to the fact that this parameter depends on several variables to be calculated.
This unstable behavior also was verified in the δ estimated by Henriques et al. (21). As
pointed out by Yan et al. (36), the majority of δ experimental measurements has very
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Figure 4.2: S-wave velocities (VSH and VSV ) as function of crack density for different
aspect ratios (α = 0.08, 0.2, 0.32, 0.52) assuming dry condition. The red circles show
the experimental S-wave velocities. The blue and green curves show the S-wave velocities
estimated by Eshelby-Cheng’s model with the crack porosity calculated via equations 2.5
and 2.6, respectively.
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(33)’s porosity equation, only in case of α = 0.2, a reasonable fitting between theory and
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poor correlation relative to the other Thomsen parameters and a very high uncertainty
range.

4.2 ANALYSIS OF MODEL AS A FUCTION OF CRACK ASPECT RATIO

4.2.1 Data interpolation

As there was not possible to acquire experimental data for velocity as function of aspect
ratio (for fixed values of crack density), we performed a linear interpolation of the velocities
as function of crack density and "resampled" the linear function for fixed values of crack
density. As this process is repeated - using the same crack denisty values for different
curves - for the four crack aspect ratios studied, it produces values that approximate how
the velocity would change in a sample for varying aspect ratios, mantaining the crack
density constant. The linear interpolation was chosen, instead of a higher polinomial
fitting, beacuse the velocity values had a small relative rate of change inside the interval
considered, as can be seen in Figure 4.5.

The same methodology was applied to the Thomsen parameter’s data in order to
produce an estimative of the Thomsen parameters as function of aspect ratio, estimative
that would not be possible to obtain experimentally, because the Thomsen parameters are
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Figure 4.5: Interpolation performed to the velocities as function of crack density in order
to produce an estimative of velocities as function of crack aspect ratio. Each column is
associated with a fixed value of crack aspect ratio, while each graph shows velocities as
function of crack density. The blue circles represent the experimental velocity data. The
red lines represent the linear interpolation of the experimental data.

calculated from the five elastic velocities measured, which in turn could be not measured
for varying aspect ratios with fixed crack densities, as described earlier. Figure 4.6 shows
the Thomsen parameters calculated from the measured velocities as function of crack
density for fixed aspect ratios, as well as the linear regression of the data corresponding
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to each aspect ratio. Sampling this curves in the same crack density values - noting
that each column corresponds to an aspect ratio value - produces the desired estimative:
Thomsen parameters as function of cracks aspect ratio with fixed crack densities.
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Figure 4.6: Linear regression performed to the Thomsen parameters as function of crack
density in order to produce an estimative of Thomsen parameters as function of crack
aspect ratio. Each column is associated with a fixed value of crack aspect ratio, while
each line of graphs shows a Thomsen parameter as function of crack density. The blue
circles represent the Thomsen parameters calulated directly from experimental data. The
red lines represent the linear interpolation of the data.

4.2.2 Elastic velocities

The Eshelby-Cheng model, following the workflow adapted for rocks with porous VTI
background, was used for the calculations of the curves in Figure 4.7. Differently from
the previous work, the theoretical curves for the velocities were calculated as functions
of the crack aspect ratio. The purple circles represent the experimental data (or our
better estimative of it, given our experimental limitations), that is, the results of the
interpolation described in the data interpolation subsection of the methodology section.

The workflow shown in Figure 2.1 was applied for calculating the theoretical elastic
velocities, using -as estimative of the crack porosity- equation 2.5 to generate the blue
continuous curves, equation 2.6 to generate the dashed red curves and equation 2.9 to
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generate the yellow curves made of dashes and points.
It is possible to observe in Figure 4.7 that, in general, the yellow curves follow closer

to the circles (i.e., that they have a better fitting with the data) than the other two
curves and that the blue curves are just a little further away from the points, while the
red curves have a very different behavior from the other two and are much further away
from the data circles in some graphs - e.g., V p0, V p45 and Vsv plots. The fact that the
velocity curves calculated using crack porosity equations 2.5 and 2.9 show a very similar
behavior, while the velocities calculated using crack porosity equation 2.6 show a different
pattern, can be associated to the fact that in the first pair of equations the crack porosity
has an explicit dependence on both crack density and crack aspect ratio (note that the
expressions are basically the same function, differing only by a proportionality factor of
(1 − φo)), while the third crack porosity equation mentioned has an explicit dependece
only on crack density.

4.2.3 Thomsen parameters

From the theoretical velocity values (i.e., calculated with the effective medium theory),
using equations of Appendix C, the Thomsen Parameters ε, δ and γ were calculated, as
functions of aspect ratio. As described in the data interpolation subsection in the method-
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Figure 4.7: The vertical axis shows values of velocity, while the horizontal axis shows
values of crack aspect ratio. Each line of graphs shows an elastic velocity with a specific
direction of propagation, while each column of graphs is related to a fixed value of crack
density. The purple circles represent the velocity values obtained via interpolation of the
experimental data. All three curves represent velocity values calculated using the Eshelby-
Cheng model workflow shown in Figure 2.1, but the blue continuous curves represent the
velocity values calculated using the crack porosity estimated by equation 2.5, while the red
dashed curves represent the velocity values calculated using the crack porosity estimated
by equation 2.6 and the yellow curves made of dashes and points represent the velocities
calculated using the model fed by crack porosity equation 2.9.

ology section, the experimental velocity values were also used to calculate the Thomsen
parameters, then these values were interpolated and resampled in order to produce an
approximation of the experimental data that would be measured for the Thomsen param-
eters as function of aspect ratio. The comparisons between the theoretical (calculated
from the theoretical velocities, using the three formulations) and the experimental (or an
approximation of what would be the experimental values) Thomsen parameters are shown
in Figure 4.8.

In Figure 4.8 we observe basically the same features observed in Figure 4.7, that is: the
curves associated to the crack porosity equation 2.9 present the best fittings with the data,
while the curves associated to the crack porosity 2.5 shows the same pattern following the
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Figure 4.8: The vertical axis shows values of the Thomsen parameters -which are dimen-
sionless and vary always between zero and one- while the horizontal axis shows values
of crack aspect ratio. The first line of graphs shows the values for the ε parameter (also
known as P-wave anisotropy), the second line of graphs shows the values for the γ pa-
rameter (also known as P-wave anisotropy) and the third line shows the values for the
δ parameter, which is related both to P- and S-waves, while each column is associated
to a fixed value of crack density. The purple circles represent the parameters values ob-
tained via interpolation of the experimental data. All three curves represent parameters
obtainde from velocities calculated using the Eshelby-Cheng model workflow shown in
Figure 2.1, but the blue continuous curves represent the velocity values calculated using
the crack porosity estimated by equation 2.5, while the red dashed curves represent the
velocity values calculated using the crack porosity estimated by equation 2.6 and the yel-
low curves made of dashes and points represent the velocities calculated using the model
fed by crack porosity equation 2.9.

trend of the circles, while being just a little further away from the data points. The curves
associated to the crack porosity equation 2.6 show a completely different behavior from
the other two, being much further away from the points -and not following the trend of
the data- at least for low aspect ratio values. Another problem concerning the red curves
(related to the crack porosity 2.6) is that its values seem to not respect the restriction
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values of the Thomsen parameters, the curves assume negative values, then increase very
fast surpassing one and then come back to reasonable values. Visually, the misfit between
the latter mentioned curves and the circles looks greater for low aspect ratio values.



5 DISCUSSIONS

We tested our experimental results against predictions of an effective medium model
underinvestigated, Eshelby-Cheng’s model, from an experimental point of view. From
a first inspection of P- and S-wave velocities, as well as the anisotropy parameters, we
can observe that Eshelby-Cheng’s model provides a better agreement between experi-
mental and theoretical results depending on the crack porosity equation chosen, equation
2.5 or 2.6. One of the limitations of Eshelby-Cheng’s model, besides the homogeneous
background assumption, is the requirement of low crack concentrations (lower than 10
%), i. e, no contact between cracks. In case of the foregoing condition being attended
Eshelby-Cheng’s model is valid for all crack aspect ratios. However, an advantage of this
model (compared with other models, e.g., (22)) is that it can handle all aspect ratios.
In this work, we present a validation of the previous statement, even considering a weak
anisotropic background, if we allow the crack porosity equation to change according to
the range of crack aspect ratios.

As observed by Henriques et al. (21) in an experimental work performed with cracked
physical models for crack density sets of 5% and 8%, with six samples for each set, the
V dry
P90o and V dry

SH showed a linear behavior with increasing crack aspect ratio. In this work,
we fixed the aspect ratio and changed the crack density. In our case, it is possible to
observe that the third curve of Figure 4.1 referring to the V dry

P90o and that the second
curve of Figure 4.2 referring to the V dry

SH seem to be constant with increasing crack aspect
ratio. We can infer from the comparison between this and Henriques et al. (21)’s work
that these two velocities seem to be independent of crack filling, since the rubber disc
inclusions simulate weak-filling materials (21), i. e., saturation different of air.

Another important factor that should be mentioned is the scattering effect. Although
the low-pass filter has been applied to all waveforms, the relation between wavelength and
crack aperture decrease with increasing crack aspect ratio. According to the corresponding
values of crack thickness shown in Table 3.1, the ratio of the smallest wavelength parallel
to the crack plane (1.216 cm for S-wave) to the highest crack aperture (0.375 cm) is
about 3.24. According to the famous experimental work performed by Marion et al. (24),
to observe the effective response of P- and S-waves propagation in anisotropic medium, the
dominant wavelength should be at least 10 times higher than the heterogeneity thickness
in the medium. However, this low ratio of 3.24 did not influence on the prediction of the
γ parameter for the group sample whose aspect ratio is 0.52.

For some velocities (VP0o and VP45o), which the direction of propagation or polarization
is not parallel to the crack plane, the distance between experimental values and the ones
predicted by Eshelby-Cheng’s model increases when crack aspect ratio is higher than 0.2
and crack density is higher than 0.07. According to the Cheng (9) and Eshelby (16)’s as-
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sumptions, the maximum value for crack density accepted in their approximation is about
10 %. It is feasible to think that such low conformity, related to crack density higher than
0.07, can be justified by the presence of the background anisotropy in all samples (γ about
5 %). We suggest, in further experiments, comparisons between modified conventional
effective models, as Hudson (22) and Cheng (9), and effective medium theories that take
into account the background anisotropy such as M. Kachanov et al. (23) and Grechka and
Kachanov (20).

The results obtained from our four sample sets, with varying crack density for each
set, have shown evidence of aspect-ratio-dependent behavior of wave propagation in
anisotropic elastic media. The penny-shaped inclusions used in this work simulated ideal
cylindrical cracks showing a low shear modulus compared to the surrounding porous ma-
trix. Our experiments used an idealized crack system exhibiting aligned crack distribu-
tions with different crack parameters: density and aspect-ratio. The size of the individual
cracks was much smaller than the smallest seismic wavelength, at least 4 times. Our re-
sults indicate that the velocities as well as Thomsen parameters in such a system depend
strongly on the geometric properties of the cracks. Regarding the geometric parameters,
crack aperture and crack density were more important than crack diameter as observed
in Figueiredo et al. (18). The main point observed here is that elastic waves propagating
in different media with different crack geometry features react slightly different to these
crack parameters.

This work studies velocities and Thomsen parameters as function of both crack density
and aspect ratio - by studing the velocities and Thomsen parameters calculated with the
Eshelby-Cheng model as function of aspect ratio, then it is useful to interpret and compare
the results obtained in the two analysis from a perspective which treats elastic velocities
and anisotropic parameters as multivariable functions of aspect ratio and crack density.
Therefore, we calculated and present in Figure 5.1 the velocity maps (we do not present
the Thomsen parameters maps because the analysis would be redundant) as function of
the two variables discussed here.

It is possible to observe in Figure 5.1 that the velocity maps produced by feeding the
Eshelby-Cheng model with crack porosity 2.5 and 2.9 show basically the same contours.
That is expected, as the curves (which are essencially profiles of these maps) show very
similar behavior and because the porosity equations 2.5 and 2.9 are basically the same
functions, differing by a proportionality factor. The velocity maps associated to the
crack porosity equation 2.6 has different contours from the other two maps in each elastic
velocity, as expected, because its porosity dependency is different from the other two, it
depends only on aspect ratio. The velocity maps associated to equation 2.6 show some
problems: the V p0 and V sv maps have some regions -low aspect ratio and high crack
density regions- in which the model breaks down, that is, produces unphysical results, in
this case it produces complex-valued velocity values. That is, probably, due to the fact
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that the crack porosity lacks the depedence on the aspect ratio variable (and that analysis
was one of our motivations to propose crack porosity equation 2.9, an equation which tries
to take into account the background porosity and has the same linear dependencies as
equation 2.5).

The curves of velocity as function of crack density can be seen as vertical profiles of
the maps presented in Figure 5.1, while the curves of velocity as function of aspect ratio
can be seen as horizontal profiles of these maps. Therefore both perspectives compare
profiles of these maps to experimental data, but de Figueiredo et al. (12) compares crack
porosities 2.5 and 2.6, while this work includes a third formulation and compares it to the
previous two. de Figueiredo et al. (12) results shows that the fitting between the model
and the data -for velocities as function of crack density- is, in general, better using crack
porosity equation 2.5 for lower aspect ratio values, while it is better using crack porosity
equation 2.6 for higher aspect ratios. A similar effect can be seen in our results mainly in
Figure 4.7 (b), but (as will be demonstrated) the overall errors in these windows related to
the crack porosity 2.6 are still greater than the ones related to the crack porosity equation
2.6.

In order to ensure a more rigid analysis in terms of comparisons between the results, we
calculated the root-mean-squared (RMS) relative error between theoretical values (elas-
tic velocities and Thomsen parameters calculated using the Eshelby-Cheng model) and
experimental data, for each graph shown in Figures 4.7 and 4.8. As the RMS error is
calculated adding differences (the squares of the relative differences and then taking the
square-root to be more precise) between the curve and the data points along the entire
range of aspect ratio, then it is a measure related to the entire curve, so it is useful to
solve the issue raised in the previous paragraph (comparing curves that fitts better the
data in different regions). Each plot is associated to a crack density, therefore the RMS
error shown in Figure 5.2 is a function of crack density.

In Figure 5.2 it is possible to observe that the error increases with crack density for
all formulations. The distance between data points and calculated curves increases with
crack density in the comparison plots shown both in this work and in de Figueiredo et al.
(12), so this is further demonstration that all formulations proposed have a limitation
concerning high crack density values, differently from their behavior relative to crack
aspect ratio, which is different for each formulation: equation 2.6 produces velocities that
behave better for high crack aspect ratios and gets worse until it breaks down for low
aspect ratios (as discussed earlier), while values related to equation 2.5, as in Figure 4.7
for example, seem to get further away from data points as aspect ratio increases.

In all graphs of Figure 5.2 it is clear that the errors associated to the velocities cal-
culated from the Eshelby-Cheng model with crack porosity equation 2.6 are the greatest,
much higher than the other ones, as anticipated by the analysis of Figure 4.7. As clear as
the previous observation is noting that the smaller error in all graphs is the one related
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to the use of crack porosity equation 2.9, also as antecipated by the analysis of Figure
4.7. The RMS-errors were also calculated for the Thomsen parameters and are shown in
Figure 5.3. As the errors associated to the crack porosity equation 2.6 surpassed 100%,
they were normalized based on the greatest error in each graph. Therefore it is not pos-
sible to draw comparisons of the errors between different parameters, but that is not our
goal here.
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Figure 5.1: Velocity maps produced using Eshelby-Cheng effective medium theory. The
colors represent the velocity values in m/s. the vertical axis shows values of crack density,
while the horizontal axis shows values of aspect ratio. Each line of maps shows one of
the five elastic velocities studied in this work. Each column of maps is associated with
one of the three crack porosity equations tested in this work. There are some regions in
the maps (firts line, second column and fourth line, second column) in whihc the model,
using 2.6, produced complex valued velocities, that is, unphysical results.
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Figure 5.2: Root-mean-squared error between elastic velocities calculated from the
Eshelby-Cheng model, using the three crack porosity formulations, and experimental elas-
tic velocities. The errors are shown for each fixed crack density associated to the graph
from which the velocity errors were calculated. (a) P-wave velocity errors. (b) S-wave
velocity errors.
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Figure 5.3: Root-mean-squared error between Thomsen parameters calculated from the
Eshelby-Cheng model, using the three crack porosity formulations, and experimental elas-
tic velocities. The errors are shown for each fixed crack density associated to the graph
from which the anisotropic parameter errors were calculated.



6 CONCLUSIONS

This work was performed in order to test the efficiency of Eshelby-Cheng’s model
for predicting elastic velocities and Thomsen parameters in cracked samples with weakly
anisotropic VTI background. More specifically, we would like to observe how well the pre-
dictions of the model would perform for different ranges of crack densities and different
aspect ratios. Based on our results we can conclude for crack density analysis:
(1) Even applying the Eshelby-Cheng’s model for samples with weakly VTI anisotropic
background, we achieved good agreement between experimental results and the model’s
predictions, for certain ranges of crack density and aspect ratio.
(2) in general, Eshelby-Cheng’s equations were more prominent on predicting elastic ve-
locities and Thomsen parameters for low crack densities: < 0.07.
(3) For different aspect ratios, the performance of the model depends on the porosity
equation chosen to feed the model. For low crack aspect ratios (< 0.2) the crack porosity
equation proposed by Thomsen (33) works best, while for high crack aspect ratios (> 0.2)
equation 9 presents better results.
And for aspect ratio analysis:
(1) In case of aspect-ratio analysis, the workflow for applying the Eshelby-Cheng model
adapted to porous anisotropic cracked samples works best (produces the overall best fit-
ting with the data) when fed with the crack porosity calculated from equation Thomsen
(33) modified.
(2) When fed with crack porosities calculated from our proposed equatio, the model pro-
duces the worst fittings, mainly for low aspect ratio regions, and is unstable -producing
unphysical results- in regions of low aspect ratio and high crack density for the elatic
velocities V p0 and V sv. This behavior may have a relationship to the fact that equation
our proposed equation does not have the original dependence between crack porosity and
cracks aspect ratio.
(3) For all three formulations tested, the RMS error grows with crack density, but for the
model fed with the crack porosity equation Thomsen (33) modified the error keeps bellow
10%, except for V p0 when the crack density is the highest tested (0.08).

Considering the fact that this approach leads to good results for cracked media which
has weakly VTI background anisotropy, it is possible to argue that our approach is appli-
cable and a good approximation for certain reservoirs, since most of natural rocks exhibit
a VTI background anisotropy, due to their layering, and also exhibit oriented crack planes,
due to tectonic stresses or induced fracturing.
One limitation is that this work studies sets of cracks oriented parallel to the background
medium isotropic planes and not in any arbitrary orientation, that would restrict the use
of this approach, making it not applicable to characterize media in which crack planes are
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tilted with respect to the isotropic planes of the background.
A generalization, that we suggest as a future work, would be to perform experimental
work to study effective medium theories for describing orthorhombic media, which is a
good approximation for a medium that has sets of crack planes oriented perpendicular
to the background medium layering. Furthermore, we suggest the use of other effective
models based on compliance instead of stiffiness.



7 APPENDIX

7.1 APPENDIX A- P- AND S-WAVEFORMS

The analysis of this work started with analysis of the transmission waveforms for the
reference sample (uncracked), and then the waveforms of all anisotropic cracked samples.
When the P-wave and S-wave propagate through the samples the waveform suffers disper-
sion due to scattering, as observed by (18). To eliminate the coda related to the scattering,
a band-pass filter of 100-150-220-280 kHz is applied in the P- and S-wave waveforms to
eliminate the coda wave related to scattering. for this dominant frequency (185 kHz) the
P- and S-wavelengths range from 2.37 to 1.37 cm and 1.27 to 1.08 cm.

Figure 7.1 show the P- and S-waveforms of reference sample for dry condition. As it can
be noted, for both P- and S-wave, there are a difference of first traveltime arrival changing
direction of propagation (P-wave) as well as changing the polarization (S-wave). Figures
7.2 and 7.3 show example of P- and S-waveforms for cracked sample in the dry condition.
Here, even in the presence of inclusions (in the samples), the quality of seismograms
remains high. This characteristics allows us to perform the first arrival picking (for both
modes of propagation) with reduced margin of error.

7.2 APPENDIX B- ESHELBY-CHENG EFFECTIVE MODEL

Here, in this work, for limitations related to saturation equipment in the laboratory, we
compared the Eshelby-Cheng’s effective with experimental results only in dry condition.
However, for extension, in this section we show the mathematical formulation of the
Eshelby-Cheng’s effective model for both dry and saturated condition. According to
Eshelby-Cheng’s effective model, the Ceff

ij for a rock containing weak-fluid filled ellipsoidal
cracks, can be evaluated by:

C
dry,sat(eff)
ij = C

dry,sat(0)
ij − φC(dry,sat)−(1)

ij , (7.1)

where
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Figure 7.1: (a) P- and (b) S-waveforms for reference sample in dry condition.
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Figure 7.2: P-wave seismograms for samples with aspect ratio α1 = 0.08 in dry condition.
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Figure 7.3: S-wave seismograms for samples with aspect ratio α1 = 0.08 in dry condition.
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c111 = λ(dry,sat)(S31 − S33 + 1) +
2µ(dry,sat)(S33S11 − S31S13 − (S33 + S11 − 2C − 1) + C(S31 + S13 − S11 − S33))

D(S12 − S11 + 1)
,

c133 =
(λ(dry,sat) + 2µ(dry,sat))(−S12 − S11 + 1) + 2λ(dry,sat)S13 + 4µ(dry,sat)C

D
,

c113 =
(λ(dry,sat) + 2µ(dry,sat))(S13 + S31)− 4µ(dry,sat)C + λ(dry,sat)(S13 − S12 − S11− S33 + 2)

2D
,

c144 =
µ(dry,sat)

1− 2S1313
,

c166 =
µ(dry,sat)

1− 2S1212
,

S11 = QIαα +RIα,

S33 = Q

(
4π

3
− 2Iαcα

2

)
+ IcR,

S12 = QIαb −RIα,

S13 = QIαcα
2 −RIα,

S31 = QIαc −RIc,

S1212 = QIαb +RIα,

S1313 =
Q(1 + α2)Iαc

2
+
R(Iα + Ic)

2
,

Iα =
2πα(cos−1α− αSα)

S3
α

,

Ic = 4π − 2Iα,

Iαα = π − (3/4)Iαc,

Iαc =
Ic − Iα

3S3
α

,

Iab =
Iαα
3
,
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Sα =
√

1− α2,

σ =
3K(dry,sat) − 2µ(dry,sat)

6K + 2µ(dry,sat)
,

R =
1− 2σ

8π(1− σ)
,

Q =
3R

1− 2σ
,

C =
kf

3(K(dry,sat) − kf )
,

I = K(dry,sat) − 2µ(dry,sat)

3
,

where α is the crack aspect ratio, K(dry,sat) is the bulk modulus of solid matrix, kf (0.0
GPa and 2.2 GPa for air and water, respectively) is the fluid bulk modulus. The λ(dry,sat)

and µ(dry,sat) are the Lamé parameters for dry or water saturated reference sample (matrix
without inclusions), respectively. According to the flowchart showed in Figure 2.1, the
reference bulk and shear modulus are

Kdry,sat = ρdry,sat
(

(V dry,sat
P0 )2 +

4

3
(V dry,sat

S0 )2
)
, (7.2)

µ(dry,sat) = ρdry,sat(V dry,sat
S0 )2. (7.3)

7.3 APPENDIX C-EFFECTIVE THOMSEN PARAMETER

Figure 2.1 shows a flowchart with the "ingredients" used to feed the modified Eshelby-
Cheng’s model. As our reference sample is not isotropic, to feed the Eshelby-Cheng’s
model, we used ρref (see Table 3.1), VP0 = (V ref

P (θ = 0o) + V ref
P (θ = 90o))/2, VS0 =

(V ref
S (ϕ = 0o) + V ref

S (ϕ = 90o))/2 (see Table 4.1). The output of model (see branch (2)
of flowchart) are elastic coefficient constant as function of crack parameter (ε, α). These
coefficients can be converted in velocities using equations such as

V
eff(dry,sat)
P,S ∝

√√√√C
eff(dry,sat)−mod
ij

ρ
(dry,sat)
eff

, (7.4)

where ρeff the the theoretical effective density shown in the flowchart of Figure 2.1.
Specifically, the effective velocities (dry and/or sat) as well as the effective Thomsen
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parameters (also dry and/or sat) can be estimated by the following equations:

Ceff
11 = ρeff (V 2

P (θ = 90o))eff (7.5)

Ceff
33 = ρeff (V 2

P (θ = 0o))eff (7.6)

Ceff
44 = ρeff (V 2

S2(ϕ = 90o))eff (7.7)

Ceff
66 = ρeff (V 2

S1(ϕ = 0o))eff (7.8)

Ceff
13 =




(
4ρeff (V 2

P (θ = 45o))eff − Ceff
11 − Ceff

33 − 2Ceff
44

)2
−
(
Ceff

11 − Ceff
33

)2

4




1
2

− Ceff
44 ,(7.9)

with
Ceff

12 = Ceff
11 − 2Ceff

66 , (7.10)

and

γeff =
Ceff

66 − Ceff
44

2Ceff
44

, (7.11)

εeff =
Ceff

11 − Ceff
33

2Ceff
33

, (7.12)

δeff =
(Ceff

13 + Ceff
44 )2 − (Ceff

33 − Ceff
44 )2

2Ceff
33 (Ceff

33 − Ceff
44 )

. (7.13)
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