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RESUMO

Neste trabalho é apresentada a aplicação da aproximação CMP (Common Mid Point–
distancia média entre fonte e receptor) de dados CSEM a uma inversão 1D neste domínio
de forma a gerar como resultado um cubo de resistividades. As aquisições CSEM são
3D, com uma malha de receptores. Sendo assim, distribuímos os dados no domínio CMP
para que toda a região do grid de inversão tenha algum dado. Para que tenhamos solução
estável nesse processo é utilizado o regularizador de suavidade nas 3 direções, de modo
que o resultado traz um sentido geológico que espera variações suaves de resistividade
em subsuperfície. O processo é implementado de maneira que todas as células de cada
coluna CMP façam parte do mesmo vetor de parâmetros a ser determinado. O modelo de
resistividade utilizado como teste tem características 3D com variações laterais do corpo
anômalo e gerou uma resposta satisfatória para o estudo.

Palavras-chaves: MCSEM. Inversão eletromagnética 1D. CMP.



ABSTRACT

This work presents the application of 1D inversion of marine CSEM data in the CMP
(Common Mid Point) approximation to generate a cube of resistivities. The method is
applied to data from 3D surveys. An interpretive model is build in the form of columns of
homogeneous zones which form a 3D resistivity grid.The data is distributed in the CMP
domain so that each resistivity column in the inversion grid contains some data points. To
achieve a stable solution the smoothing regularizer is applied in all 3 directions, so that
the generated geological models present smooth variations in the resistivity. The method
is successfully applied to a set of synthetic data generated from a 3D model which includes
two resistive targets at different depths.

Keywords: MCSEM. 1D electromagnetic inversion. CMP.
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1 INTRODUCTION

The Marine Controlled Source Electromagnetic (mCSEM) method’s rise in oil explo-
ration since the 2000’s brought forth an efficient tool to mapping resistive targets, with
good lateral definition (Buonora et al., 2014; Barker and Baltar, 2016). Inversion of mC-
SEM data remains a challenging task, especially if one needs to resolve 3D structures,
which demands a great amount of computer resources. In many applications, some com-
puter time can be saved by choosing a suitable initial model for the inversion. Starting
with a homogeneous model is a common practice, but if a reasonable approximation to
the resistivity under the survey lines can be built prior to the inversion, then convergence
may be achieved with less iterations.

Mittet et al. (2008) presented a 1D inversion scheme using the Common MidPoint
(CMP) gathers approximation which was able to recover 2D structures. In that method,
the data for the 1D inversions are composed of measurements from all source-receiver off-
sets in the 2D survey that share the same common midpoint, and a separate 1D inversion
is performed for each CMP. This method was improved by Crepaldi et al. (2011) with the
introduction of analytical derivatives to calculate sensitivities, which made the process
significantly faster, and lateral constraints (Dell’Aversana and Vivier, 2009; Tseng et al.,
2012; MacGregor and Tomlinson, 2014) to allow the inversion of a CMP data set to influ-
ence the results of the surrounding CMPs, which improved the approximation achieved
to the true 2D structures.

The same approach, with analytical derivatives and lateral constraints, is applied here
to invert data from 3D surveys. The design of a 3D survey allows the data on a single
CMP to be composed of source-receiver pairs from multiple survey lines and multiple
directions, therefore increasing the amount of information used in each 1D inversion. Each
CMP generates a column of resistivities which are used to build a 3D “cube”, representing
the volume underneath the survey area.

The results show that the method can achieve a sufficiently good approximation to
allow a preliminary 3D interpretation, and to generate an approximate 3D model to be
used as first guess in a true 3D inversion.
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2 METHOD

The data are acquired in configurations that allow multiple source-receiver pairs to
contribute to each 1D inversion for each CMP, as illustrated in figure 2.1.

The observed data are the horizontal components of the electric field (Ex, Ey), rep-
resented as the vector d; the parameter vector is m, formed by the Np values of the
logarithms of the resistivities of each homogeneous layer in each CMP column (figure
2.2); the mathematical model of the synthetic data as a function of the parameters is
F(m), which represents the layered Earth response calculated as shown in Crepaldi et al.
(2011).

To achieve stable solutions, minimum gradient (smoothing) constraints are imple-
mented between adjacent parameters in both vertical and lateral directions. The vertical
constraints are necessary to regularize each CMP inversion, whereas the horizontal con-
straints are used to allow the inversion of each CMP to exert influence on the results of its
surrounding columns. This lateral smoothing usually carries more weight in the process
than the vertical smoothing, because in geological environments sharper variations are
expected in the vertical than in the horizontal direction. The implementation also allows
for leaving some parameters unconstrained, to account for situations where discontinuities
are expected, such as in the borders of salt or igneous intrusions.

The application of Occam’s inversion (Constable et al., 1987) generates a smooth model
as an approximation to the real earth in the sense that it is able to generate synthetic
data that fit the observations. The smoothing constraints are introduced through the

(a) CMP associated with a receiver position.

(b) CMP not associated with a receiver position.

Figure 2.1: Acquisition configurations. Triangles represent receivers. The transmitters
are assumed to be over the appropriate receiver positions in each source-receiver pair.
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Figure 2.2: CMP column.

Figure 2.3: One CMP data. The color represent the different receivers, the gaps are the
distance between the receivers, 1 Km
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matrices S(x,y,z). Each row of a smoothing matrix defines which parameters are to be
constrained to each other, simply by placing a -1 and a 1 in the positions corresponding
to those parameters, and leaving zeroes in the remaining elements. When this matrix is
applied to the parameter vector m in the functional to be minimized, it has the effect
of imposing that the difference between those two parameters is as small as possible, by
enforcing that the equation

Sm = 0 (2.1)

be satisfied in a least squares sense.
Another kind of a priori information may be included through the use of absolute

equality constraints (Medeiros and Silva, 1996), which are useful when reliable information
exists about the resistivities in a given set of parameters, as when there is well logging data
in the region under the survey. In this case, if there are Nc parameters to be constrained,
the method defines a vector mp, with only the Nc values to be attributed from the a priori
information, and a matrix PNc×Np , each row of which has a value of 1 in the the position
corresponding to the parameter to be constrained and zeroes elsewhere, such that

Pm = mp. (2.2)

In the inversion process, the equalities imposed by the constraint matrices (equations
2.1 and 2.2) are enforced in a least squares sense.

The functional to be minimized, then, includes a term for fitting the data, and one for
each kind of constraint that enters the process. It is written as

φ = [d− F (m)]Wd[d− F(m)] + aH
(
mTST

xWxSxm + mTST
yWySym

)
+aV

(
mTST

z WzSzm
)

+ ap(Pm−mp)
TWp(Pm−mp).

(2.3)

In this functional, the regularization parameters a set the relative weighting for the
different constraints. The matrix Wd is defined as a function of the uncertainties in the
measurements, such as the standard deviations associated with each measurement. The
method also allows the use of weighting matrices (W(x,y,z,p)) to define different degrees of
constraining to different regions of the interpretive models.

The inversion is an implementation of Gauss-Newton, with the Levenberg-Marquardt
method (Marquardt, 1963; Auken and Christiansen, 2004), in which in each iteration
the damping parameter µ is multiplied or divided by a factor based on the success of
the previous generated model. The inicial Marquardt damping parameter is 10 and the
multiplicative factor is 2.
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In the kth iteration the regularized estimator is, then, written as

mk+1 = mk + [JT
k WdJk + aH(ST

xWxSx + ST
y WySy) + aV (ST

z WzSz)+

apWp + µI]−1[(WdJk)T (d− F (mk)) + aH(ST
xWxSxmk + ST

y WySymk)+

aV (ST
z WzSzmk) + apWp(mk −mp)],

(2.4)

where the elements of the Jacobian matrix J are the sensitivities:

Jij =
∂ log |Ei|
∂log(ρj)

. (2.5)

Here, the logarithms are employed to reduce the range of values of the field amplitudes
and resistivities, which can span several orders of magnitude. The logarithms also have
the advantages of damping the amplification the short offsets and preventing negative
values to be attributed to the resistivities.

To take advantage of the analytical derivatives of the field, the sensitivities, as defined
in equation 2.5, are calculated as

Jij =
ρj
|Ei|2

Re

{
Ei

∗∂Ei

∂ρj

}
. (2.6)

The iteration represented by equation 2.4 is repeated until the convergence criteria
are satisfied. In this application, the stopping criteria are the minimum variation of
the model, the minimum variation of data misfit and the minimum misfit. As a non
convergence criterium, the process also stops after a specified number of iterations is
achieved.



3 APPLICATION TO SYNTHETIC DATA

This chapter presents two example applications of the method to synthetic data sets.

3.1 MODEL 1

In the first example, we invert synthetic data generated by the 3D model shown in
figure 3.1. Two 100 m thick resistive targets (100 Ohm-m) are embedded in a conductive
(1 Ohm-m) host, under a 1,500 m thick water layer. The first target is a T shaped body
placed at 1,500 m below the sea bed; the second is a slab at a depth of 2,500 m below
the sea bed. The model covers a total area of 160 km2. The survey configuration (figure
3.2) has 9 receiver lines, and 7 source lines running at 50 m above the flat sea bed. The
receiver lines are equally spaced, with a separation of 2,000 m. Each has 21 receivers
spaced by 1 km. The source lines extend from 10 km to the left of the first receiver to 10
km to the right of the last receiver. The source lines are between x coordinates -6000 m
and 6000 m. In each source line, the sources are simulated at 100 m intervals.

The 3D forward model calculation of the synthetic observations was based on the
integral equation method presented by Zhdanov (2009). Data were generated at three
frequencies (0.25, 0.75 and 1.25 Hz).

3.1.1 Start model

The interpretive model is formed by a 410 column grid in with 41 × 10 cells in the
xy plane, each a 500 m by 1500 m rectangle. The first layer is 25 m thick. Thicknesses
of the inversion layers increase with with depth by a factor of 1%, to compensate for the
decrease in sensitivity with depth. The starting model is homogeneous, all layers start at
a resistivity of 1 Ohm-m.

3.1.2 CSEM data

The synthetic data were contaminated with 3% gaussian noise. For the inline Ex field,
offsets ranging from 1 km to 10 km were used. For the broadside Ex component, the
used offsets were from 1 km to 8 km. The cutoff of the data is at the amplitude of 10−15

V/Am2. For the Ey data, offsets between 1 km and 5 km were used.

3.1.3 Inversion results

Figures 3.3 to 3.9 show the results of inverting the data without any absolute equal-
ity constraints. The smoothness regularization weights for the horizontal constraints is
0.1, and the one for the vertical constraints is 0.05. These parameters were chosen as

6
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(a) 3D model view.

(b) Top view.

Figure 3.1: Test model: 1.5 km water layer with 0.3 Ω·m, background with 1Ω·m and
target with 100Ω·m .
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Figure 3.2: Acquisition layout for the simulated survey.

the smallest values for which a stable solution was achieved. The process reached the
convergence criteria after 19 iterations.

Figure 3.3 shows a vertical section on the xz plane at y = 0, and figures 3.4 and 3.5
show vertical slices in the yz plane on x = −5, 500 m and x = −2, 500 m, respectively,
with the resistivity values recovered by the inversion process. The red lines represent
the positions of the resistive targets. Both bodies appear in the final section positioned
approximately 250 m above the true depths. The highest resistivity recovered is 8 Ohm-m.

Figure 3.6 shows a horizontal slice at a depth of 2,200 m. The inversion has success
in the delimitation of the left resistive body, albeit with overly smooth contours. The
delineation of the deeper resistive body is observed in the horizontal slice at 3,150 m
shown in figure 3.7. Again, a good match with the true model is achieved, with smooth
borders. The highest resistivities are found at the center of the bodies, because in those
regions the 1D approximation is more effective.

A measure of the data misfit for each CMP is calculated as

ErrCMP =
100

Nobs

N∑
j=1

∣∣∣∣1− Eobs

Emod

∣∣∣∣ . (3.1)

The achieved overall misfit of the data is 0.45%. Figure 3.8 shows the evolution of the
total data misfit with the number of the iterations. The best fit are achieved for CMPs in
areas furthest from the borders of the 3D bodies, where the geometry of the true model
is closer to that of a layered earth. To illustrate this behavior of the solution, figure 3.9
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shows the map of misfits for all CMPs at the 3 frequencies used. The highest values in
these maps are close to the positions of the borders of the resistive targets.

Figure 3.3: Slice XZ plane on 0 m on Y.

Figure 3.4: Slice Y Z plane on -2500 m on X.



10

Figure 3.5: Slice Y Z plane on -5500 m on X.

Figure 3.6: Depth slice on 2220 m.
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Figure 3.7: Depth slice on 3150 m.

Figure 3.8: misfit
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(a) 0.25 Hz

(b) 0.75 Hz

(c) 1.25Hz

Figure 3.9: Misfit maps for the 3 frequencies used in the example.
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3.1.4 Simulation of well constraint

In the exploration works, it is sometimes possible to use well logging information to
drive the inversion process. In this example, it’s given the information that in the true
depth has a resistive region by one cell with 100 Ohm-m and 10 of weight on the ap.

On figure 3.10 to figure 3.14 show the recovered bodies in the correct positions and
with this constraint the highest resistivity recovered become 30 Ohm-m.

Figure 3.10: Slice XZ plane on 0 m on Y.
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Figure 3.11: Slice Y Z plane on -2400 m on X.

Figure 3.12: Slice Y Z plane on -5500 m on X.
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Figure 3.13: Depth slice on 2450 m.

Figure 3.14: Depth slice on 3450 m.
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3.2 MODEL 2

The second example model is shown in figure 3.15. One resistive target (100 Ohm-m)
with 100 m of thickness, at 1500m below the sea bed, is embedded in a layered model
with 1, 2, 3, and 250 Ohm-m, respectively, all layers are 1 km thick.

3.2.1 Inversion results 2

The same inversion grid of the first example was used, but cropped in the y direction
between -4500 m to 4500 m. The resistivity start model was a homogenous layer of 1
Ohm-m from the sea bed to 4500 m and the last layer with 250 Ohm-m. This last layer
was input as a priori information with weight of 10 on the ap parameter.

Figure 3.16 shows a vertical section on the xz plane at y = 0, and figure 3.17 shows
a vertical slice in the yz plane on x = 0 m, with the resistivity values recovered by the
inversion process. The body appear in the final section well positioned in depth. The
region below the body lost some sensitivity and appears with lower resistivity than the
true values.
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(a) Vertical section of model 2.

(b) Top view of model 2.

Figure 3.15: Model 2: 1.5 km water layer over layered sediments and a resistive target
with 100Ω·m .
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Figure 3.16: Slice XZ plane on 0 m on Y.

Figure 3.17: Slice Y Z plane on 0 m on X.
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Figure 3.18: Depth slice on z = 2500 m.
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(a) 0.25 Hz

(b) 0.75 Hz

(c) 1.25Hz

Figure 3.19: Misfit maps for the 3 frequencies used in the example.



4 FINAL REMARKS

The 1D inversion of 3D mCSEM data on the CMP domain with lateral constraints has
been able to produce a quick first approximation to the geoelectrical structures under a
survey area. The use of regularization constraints not only contributes to the achievement
of stable solutions, but also helps to create a better delineation of the targets, by allowing
the data from one CMP to exert influence on its surrounding CMP columns.

The 3D models that result from this inversion are hoped to be useful as a first in-
terpretation tool, and also as first models in a true 3D inversion, with the possibility of
saving some computer time by reducing the number of iterations.
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